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In the resource-constrained federated edge learning (FEEL) systems, fragment-sharing is an efficient approach
for multiple clients to cooperatively train a giant model with billions of parameters. Compared with the classical
federated learning schemes where the local model is fully trained and exchanged by each client, the fragment-
sharing only requires each client to optionally choose a parameter-fragment to train and share, according
to its storage, computing, and networking abilities. However, when the full model is no longer delivered
in fragment-sharing, the backdoor attacks hidden behind the fragments become harder to be detected, which
introduces formidable challenge for the security of FEEL systems. In this paper, we firstly show that the existing
fragment-sharing works suffer a lot from the backdoor attacks. Then, a Backdoor-Resilient approach, named
BR-FEEL, is introduced to defend against the potential backdoor attacks. Specifically, a twin model is built
by each benign client to integrate the parameter-fragments from others. A knowledge distillation process is
designed on each client to transfer the clean knowledge from its twin model to local model. With the twin
model and knowledge distillation process, our BR-FEEL approach makes sure that the local models of the
benign clients will not be backdoored. Experiments on CIFAR-10 and GTSRB datasets with MobileNetV2 and
ResNet-34 are conducted. The numerical results demonstrate the efficacy of BR-FEEL on reducing attack success
rates by over 90% compared to other baselines under various attack methods.

1. Introduction client can conceal a backdoor in its fragment that is going to be
shared with others [8]. When receiving and integrating the backdoor
fragment, a benign client has its local model infected with the backdoor
unconsciously. Then, the backdoor model of the benign client produces
correct outputs for benign inputs but exhibits malicious outputs desired
by the attacker when recognizing a trigger [9]. A diagram of the
backdoor attack for fragment-sharing is illustrated in Fig. 1, in which
the benign model has it local model infected with a backdoor and
misclassify a stop sign with a black block as a pass sign, thereby
introducing potential security risks.

Due to the threat of backdoor attacks on the security of FL, a
series of backdoor defense strategies have been proposed, most of

With the rapid development of Artificial Intelligence and Edge
Computing, the cooperative training of a large-scale model in the
federated edge learning (FEEL) scenario has become a significant and
interesting research topic. On one hand, the model training and sharing
on the billions of parameters pose a significant challenge for resources-
constrained edge systems [1,2]. On the other hand, sharing a full model
to others may leak the privacy of users, since a gradient inversion
attack that can recover the local data of a client from its shared
model has been presented in [3]. With the above consideration, more
and more researches consider the fragment-sharing as an efficient
approach to cooperatively train a giant model in FEEL [4-7]. Compared

with traditional methods in which the full models are exchanged,
the fragment-sharing only requires the clients to optionally select a
parameter-fragment to train and share, according to their storage,
computing, and networks abilities. Thus, it can be recognized as a
resource-friendly and privacy-preserving approach in FEEL.

Despite the above advantages, the fragment-sharing also introduces
a new challenge on the security of FEEL. Specifically, a malicious
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which are based on full model exchange and can be categorized into
pre-aggregation defense, in-aggregation defense, and post-aggregation
defense [9]. In pre-aggregation defense, clustering methods, e.g. Krum
in [10], AFA in [11], and Auror in [12], are adopted to detect and ex-
clude those backdoor models before model aggregation. In-aggregation
defense uses robust aggregation techniques during model aggregation,
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Fig. 1. A diagram of the backdoor attack in FEEL with fragment-sharing.
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Fig. 2. Results of backdoor attack in fragment-sharing.

such as median, trimmed mean [13] or robust learning rate [14] to help
the parameter server get rid of the negative impact from the malicious
models. Post-aggregation defense usually rely on the individual clients
to purify the aggregated global model. Techniques such as neuron
pruning [15] and unlearning [16] are commonly employed for this
purpose. However, all the existing studies require the full model as the
background to detect, robust aggregate, or purify the backdoor models.
Lacking the full model makes the previous defenses unsuitable in the
fragment-sharing approach, and makes it harder to verify whether a
fragment is safe or not. Consequently, a crucial question arises: In FEEL
with fragment-sharing, how can a benign client acquire useful knowledge
from others without introducing potential backdoor?

To further motivate our work, a demo based on [7] is conducted
to concretely show how the backdoor attack can be conducted in
FEEL with fragment-sharing. Specifically, we consider a FEEL system
with four benign clients and one malicious client. Each client holds
a fraction of data from the MNIST dataset [17], and locally trains a
neural network according to its dataset. The neural network of each
client consists of three convolutional layers and one linear layer. Due
to the constrained computing and network resources, at most two layers
of the neural network will be trained and shared by each benign client
in each training round. The malicious client embeds a backdoor by
fine-tuning on a poisoned dataset [3], introducing the backdoor into
the shared model fragment. When receiving the fragments shared from
others, the benign clients integrates those fragments into its local model
according to the method proposed in [7]. Figs. 2(a) and 2(b) illustrate
the change of attack success rate (ASR) and clean test rate (CA) with
the number of training epochs. ASR reflects the probability of the model
outputting the result expected by the attacker when facing input with
trigger, while CA reflects the probability of the model outputting the
correct result when facing clean input without trigger [9]. Notably, the
ASR of the benign client steadily increases with the number of training
epochs, and finally gets close to 100%. Besides, the CA of benign clients
remains stable at about 97%, which means the backdoor attack cannot
be detected on the clean data.

To answer the above crucial questions, this paper studies the back-
door defense in FEEL with fragment-sharing and proposes a backdoor

resilient federated edge learning algorithm (BR-FEEL for short). Specif-
ically, we consider a decentralized FEEL scenario that includes some
benign clients with clean datasets and some malicious clients with
poisoned datasets. Our objective is to ensure that the benign clients
can cooperatively train clean models without backdoor introduced by
fragment-sharing. Considering that only the parameter-fragments are
shared, the backdoor fragment cannot be detected until it is embedded
in the local model. To keep its local model clean, each benign client
uses a twin model to receive the fragments shared from others. Due to
the existence of backdoor fragments, this twin global model is likely
to exhibit backdoor behaviors. Considering that the backdoor model
will not exhibit abnormal behavior when facing input without trig-
gers [9], we adopt knowledge distillation technique and use the twin
model as a teacher to guide the local model of benign clients, thereby
achieving global knowledge transfer without introducing backdoor.
A series of experiments are conducted to validate the efficiency and
backdoor-resilience of our method. In summary, our contributions are
as follows:

» To the best of our knowledge, this paper is the first to pay
attention to the backdoor defense issue in FEEL with fragment-
sharing. We use a demo to prove that the malicious clients
in FEEL can launch backdoor attacks on the benign clients by
sharing a backdoored fragment of the whole model. Our work
highlights the potential risks of backdoor attacks in FEEL with
fragment-sharing.

A backdoor resilient federated edge learning (BR-FEEL) approach
is proposed to effectively help benign clients acquire knowl-
edge from other clients without introducing backdoor. Specifi-
cally, a twin model is used by the benign clients to integrate
the parameter-fragments shared by other clients. Then, the twin
model can serve as a teacher network for knowledge distillation
during the training of the local model. With the help of the
twin model and knowledge distillation technique, our BR-FEEL
approach has a strong backdoor resilience against most of the
backdoor attack methods.

We conduct extensive experiments utilizing the MobileNetV2 and
ResNet-34 model on the CIFAR-10 [18] and GTSRB [19] datasets.
Specifically, we introduce five common data poisoning methods,
namely BadNet [20], Blend [21], Dynamic [22], Trojan [23],
and Adaptive_patch [24]. The performance of different defense
baselines, including Vanilla FEEL [7], Median [13], Geometric
Median [25], Norm Clipping [26], and our BR-FEEL, is com-
pared under these attack methods. Simultaneously, we explore
the impact of the proportion of malicious clients and data dis-
tribution on BR-FEEL. Numerical results reveal that our BR-FEEL
significantly reduces the attack success rate by more than 90%
on the CIFAR-10 and GTSRB datasets compared to Vanilla FEEL,
Median, and Geometric Median. Furthermore, in comparison to
Norm Clipping, we achieve a reduction in the attack success rate
by more than 6% and an increase in prediction accuracy by more
than 40%.
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Roadmap. The remainder of this paper is organized as follows.
Section 2 gives the related work. Section 3 presents our FEEL model
and the problem definition. The BR-FEEL are presented in Section 4. In
Section 5, we conduct extensive experiments to exhibit the performance
of BR-FEEL. Finally, Section 6 concludes this work.

2. Related work

In this section, we introduce related work about FEEL with fragment-
sharing, summarize existing backdoor defense strategies in FL and
knowledge distillation technology.

2.1. FEEL with fragment-sharing

Due to the limitations of system bandwidth [7], computing power
[27], and user privacy requirements [3], there has been a growing
interest in FEEL with fragment-sharing, where only a subset of the
model parameters is shared among clients. In FEEL with fragment-
sharing, a critical consideration is how to obtain a model fragment.
Consequently, research in [28-30] has introduced optimization tech-
niques to get a suitable model fragment, achieving a trade-off between
training efficiency, communication burden, and privacy budget. Similar
works can also be found in personalized federated learning [31-33],
where clients share only convolutional layers and batch normalization
layers to enhance local penalization. However, many existing studies
can only share specific model fragments or necessitate a complex calcu-
lation process to obtain an appropriate model fragment, making them
less adaptable to dynamic federated learning systems. As a solution,
Wang et al. [7] propose the use of masks to derive a model fragment
for communication, and present a resource-adaptive learning algorithm
with theoretical convergence guarantees under arbitrary neuron assign-
ments. This approach is viewed as a promising paradigm for FEEL with
fragment-sharing. In this paper, our FEEL with fragment-sharing is built
upon the framework introduced in [7].

2.2. Backdoor defense in FL

Given the potential harm of backdoor attacks in FL, numerous
studies have explored backdoor defenses in FL [9,10,13,15,16]. Based
on the timing of implementing defense mechanisms, backdoor defenses
in FL can be categorized into Pre-AD, In-AD, and Post-AD [9]. The
objective of Pre-AD defense is to filter out malicious model parameters
to avoid aggregating a backdoor model. Considering the similarity
among benign model parameters, clustering is introduced as an effec-
tive means to assist the parameter server in identifying similar benign
model parameters. Examples include Krum [10], AFA [11], Auror [12],
and FoolsGold [34], which utilize Mahalanobis distance or cosine sim-
ilarity to identify such similar benign model parameters. In-AD defense
aims to obtain a clean global model during the aggregation process.
Techniques such as median, trimmed mean [13], and robust learning
rate [14] are employed for robust model aggregation, eliminating the
influence of malicious model parameters. Similarly, to minimize the
impact of malicious model parameters during aggregation, differen-
tial privacy techniques are adopted, which involves normalizing local
models and adding appropriate Gaussian noise to resist backdoor at-
tacks during the aggregation process [26,35]. Post-AD defense aims
to purify a backdoor global model, thus getting a clean global model.
For instance, Wu et al. [15] use clean data to prune the backdoor
model, removing backdoor parameters from the neural network. Sim-
ilar purification methods include conducting machine unlearning on
the backdoor model to render it incapable of backdoor attacks [16].
However, most existing research has primarily focused on backdoor
defenses in FL with full model sharing. In FEEL with fragment-sharing,
the fragment introduces additional challenges for backdoor defenses.
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2.3. Knowledge distillation

Knowledge distillation, initially proposed by Hinton et al. [36], is
seen as an effective method for transferring knowledge. In knowledge
distillation, the student network is supervised by the knowledge pro-
vided by the teacher. For instance, the student network can be trained
by imitating the output knowledge of certain layers of the teacher
network [36-38]. According to the type of knowledge, knowledge dis-
tillation is divided into three categories: response-based, feature-based,
and relationship-based [39]. In response-based knowledge distillation,
a common approach involves having the student network learn the
soft logits produced by the teacher network, which is the output result
of the last fully connected layer of the neural network [36,40,41].
However, this distillation method ignores results of the middle layers
of the neural network, leading to relatively limited improvement in
the student network. Therefore, feature-based knowledge distillation is
proposed [42-44], which uses features extracted from the middle layer
of the teacher network to serve as hints for the output of the middle
layer of the student model. In order to better extract teacher feature
information, Li et al. [45] use supervised learning to find important fea-
tures. Differing from the aforementioned distillation modes that involve
learning the output results of the teacher network, relationship-based
knowledge distillation provides the student network with a relationship
mapping that facilitates learning from the teacher model [39]. Notable
studies include the incorporation of the flow of solution procedure
matrix to guide the training of the student model [46].

In recent years, knowledge distillation has also been explored in
the research of backdoor defense. For example, Li et al. [47] in-
troduce neural attention distillation to repair a backdoor model on
clean dataset. Similar work is also reflected in [48,49]. In addition
to the above-mentioned backdoor defense under single machine, Zhu
et al. [50] deploy a generative adversarial network on the server side to
generate negative samples and use adversarial distillation to repair the
backdoored global model in FL. Some recent works [51,52] also point
out that repairing the backdoored global model through knowledge
distillation can effectively alleviate the hidden dangers of backdoor
attacks in FL.

However, the existing knowledge distillation-based backdoor de-
fense mechanisms still have some non-negligible concerns. Firstly, most
works require the parameter server to have an additional validation
dataset. For example, Zhang et al. [51] assumes that the parameter
server possesses some unlabeled datasets for voting, which compro-
mises data privacy in federated learning and is impractical in a de-
centralized environment. In our work, we consider a decentralized FL
scenario where benign clients can rely solely on their local clean data
for backdoor defense. On the other hand, most methods focus on using
knowledge distillation to repair a backdoor model [50,52], i.e., how
to detoxify a poisoned model. In contrast, we consider how to use
knowledge distillation to achieve the transfer of benign knowledge,
preventing the introduction of backdoors during training rather than
repairing a malicious model. This is evidently more efficient. Finally,
in resource-constrained edge environments, clients often can only share
parts of the model parameters, making method in [51], which relies
on model inference on unlabeled dataset for consensus, infeasible. In
our paper, we overcome the difficulty of model fragments being non-
inferable by aggregating to obtain a complete twin model and use it as
a teacher to facilitate the transfer of benign knowledge.

3. Model and problem definition

In this section, our FEEL with fragment-sharing system model, the
general backdoor attack goal in FL, the problem definition for backdoor
resilient FEEL with fragment-sharing and knowledge and capability of
clients are introduced one by one.
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3.1. FEEL system with fragment-sharing

In this paper, we consider a decentralized FEEL with fragment-
sharing system comprising N clients, denoted by the set V. Unlike
centralized FL with a parameter server for aggregation [53], the decen-
tralized FL paradigm introduces heightened complexities for backdoor
defense. Each client k possesses a local dataset D,, local model 8, and
exchanges data over the network. However, owing to the user require-
ments or system constraints, each client k is restricted to transmitting
a maximum of B, bits of data during each communication process,
which is different from traditional federated learning. This limitation
is particularly reasonable, especially in the distributed training of large
language models [54]. The limited edge network resources make it
difficult for clients to share all model parameters, which promotes
research based on sharing of model fragments. By training their own
models locally and sharing the updates with others, all clients will
achieve the following goal of our decentralized federated learning step
by step:

i 3 12 0 D, €3]
{91,,4%1;)511%4; lDIfk( > Dy)-
In the above equation, f, represents the local loss function of each
client k based on its local dataset D, such as cross entropy or mean
square error loss. The overall dataset is denoted as D = {D;UD, U ---U
Dy} and 6, represents a d-dimensional local model of client k.

To effectively optimize the objective (1) under the resource con-
strains, Wang et al. [7] adopt masking technology to achieve federated
learning with partial model parameter sharing. Similar ideas are also
reflected in the research of Qiao et al. [55]. Therefore, in this paper,
we follow this idea and use masks to achieve decentralized FEEL with
model fragment sharing. Specifically, each client is assigned with a
initial local model 92. In each global round ¢ = 1,2,..., the client k
first trains the local model on the local dataset, then transmitting a
fragment of the model, conforming to the partial parameter constraints,
to other clients. Finally, client k updates its local model upon receiving
fragments from other clients. The procedural details are outlined as
follows:

» Local Training: Each client k trains its own local model 0,’3 to
optimize the local loss f,(6}; D;) on its dataset Dy for E epochs,
Le 0" =0, =iV (0} Dy) for i =0,1,2,..., E—1. 6} denotes
the ith local models of client k in global round ¢. Besides, ;1,’(" is
the corresponding learning rate in each iteration and V fk(BL"; D)
is the corresponding gradient of fk(b?]'(’i; D).

Fragment Sharing: Each client k gets a model fragment 91'(
through mask my, i.e @,’( = 9,’(’E © my, and share é,’( to other clients.
Mask m, is a binary matrix of the same size as 6, with [lm;|l, < By
and © denotes the Hadamard product.

Fragment Aggregation: Each client k aggregates the received
model fragments and its local model to generate a new one that
will be used in the next round local training. In a mathematical
formulation, we have 0/’:1’0 = Aggre(Uy| {60! }). The Aggre( ) is an
abstract aggregation function here. Specifically, the parameter of
each dimension in local model is the average of the corresponding
dimension parameters of all its own and received fragments. For-
mally, the parameter of client k at eth dimension can be expressed
as: 6,7 (e) = (0, ()+X ien\io. B1(€))/(c), where ¢ = 1,y T(OD)+1

1(6")==1
and () is a judging fu(n'c)tion.

By repeating the training rounds for sufficient times, all clients
obtain the high-accuracy model on its own dataset.

3.2. General backdoor attack in FEEL

We categorize the set of all clients V' into two groups: the set of
malicious nodes S, and the set of benign clients ;. Malicious clients
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possess a poisoned dataset, wherein specific triggers are added to some
samples, and the real labels are modified. Generally, training on such a
poisoned dataset results in a model with a backdoor. On the other hand,
benign clients have a clean dataset, where all samples and labels remain
unmodified. For each malicious client k¥ € S, during the fragment-
sharing stage, it transmits a tampered model fragment 9,’(. Specifically,
the non-zero positions in 5,’( should align with those in the binary
matrix m; to meet system constraints. This intentional manipulation
leads benign clients to obtain a backdoor model upon aggregating all
the received model fragments.

In general, the backdoor model of a benign client behaves normally
without triggers but exhibits malicious behavior when triggers are
present. Let x and ¢(x) denote the clean and manipulated data sample,
respectively. Similarly, y and z(y) represent the corresponding true
label and the target label that the malicious node aims to induce.
The optimization goal of a general backdoor attack in FEEL with
fragment-sharing is defined as follows:

LY 0 5D + £ 0G0, 7(0)))

n——0
1Ssl &5,

{x.y}€Dy

st 0yt =0 — V[0 D). i=0.1.2,.. E— 1,
9;{ = OZE O my, ()]
9;:—1’0

mi

= Aggre{Uics, 10,1} U {Ujes, (0)1).Vk € 5,

10;1lo < By, 6 = 6, © my, Vb € S,

16; llp < By, 8}, =8, © my,Yh € S,,.
The main optimization objective of the attackers encompasses two main
components. The first loss function encourages the victim to achieve
high prediction accuracy on clean inputs, i.e. a backdoor model should
have the same output with normal model on a clean sample. The second
loss function aims for a high attack success rate when facing inputs
with triggers, meaning the model produces the output desired by the
attackers. Additionally, the first three constraints mirror the training
process of benign clients in FEEL with fragment-sharing, describing the
training process for benign clients. The latter two constraints reflect the
constrictions of the system, that is, for both benign clients and mali-
cious clients, they send a model fragment that satisfies this constraints.
The specific fragments are determined by their respective masks.

In summary, in FEEL with fragment-sharing, the objective of the
malicious client is to transmit a specific model fragment that satisfies
the system constraints to the benign client during the fragment-sharing
phase, so that when the model fragment is embedded into the local
model of the benign client, can demonstrate backdoor features.

3.3. Problem definition

In contrast to backdoor attackers, our objective is to ensure that
the local model trained by the benign client exhibits high prediction
accuracy solely on clean inputs, without producing the result expected
by the attacker for inputs with triggers. However, due to privacy
restrictions in FL, clients can only share model parameters or gradients,
but are not allowed to share relevant information such as local data
or device capabilities, which makes benign clients hard to purify or
filter received fragments from other clients. Given these constraints,
benign clients must employ an efficient local training strategy to ac-
quire knowledge from other clients while avoiding the introduction of
potential backdoor into their local models. Consequently, the goal of
backdoor resilient FEEL with fragment-sharing can be formulated as
the following multi-objective optimization problem.

min {g;(0;). 8 (0)},Vk € S,
0, €R4

s.t. 8100 = —Ey yep, [f1Op; {@(x), ()P,
2200 =B y1ep, 1104 (x 7)) ®
0,1 = Aggre(Uses, 101} U (Upess, 10},
||é;,||o < Bb»élt] = é; © my., Vb € S,
10} llo < By 8}, = 8, @ my, Vh € 5,,.
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Table 1
Important symbols.
Parameter Definition
N Number of clients
vV Set of clients
D, Dataset of client k
A Model parameters of client k
By, Model constraint of client k
Jx Local loss function of client k
1y Learning rate of client k
0,0, Model fragment of client k
my, Mask matrix of client k
S, Set of benign clients
S, Set of malicious clients
E Epoch number
B A randomly sampled mini-batch
d Dimensions of model parameters
v Coefficient of knowledge distillation loss
D, Parameter of Dirichlet function

{x,y}, {o(x),7(»)} Clean and poisoned sample

Ve Gradient of function f(-)
o] Hadamard product

I 1o Zero norm

Aggre() Aggregation function

The above two objectives reflect the goal of federated learning and
the goal of resisting backdoor attacks, respectively. In this paper, our
approach begins by aggregating a backdoor model and employing it
as a teacher network for knowledge distillation on the local model.
Leveraging the fact that the backdoor model behaves normally when
faced with clean input, this strategy facilitates the transfer of global
knowledge locally without introducing a backdoor.

3.4. Knowledge and capability of clients

For a malicious client, it can obtain a poisoned data set through
data poisoning. Therefore, it can train on the poisoned dataset or
acquire a backdoor model. During the fragment-sharing stage, ma-
licious clients can arbitrarily modify the parameters of the shared
model fragment. For example, this manipulation may include using
model replacement [56], ensuring that the model aggregated by benign
clients ultimately contains a backdoor. Importantly, we grant malicious
clients knowledge of the network topology as well as information about
other clients, including other malicious clients, allowing for cooperative
actions among clients. The model fragments shared by malicious clients
must conform to the system restrictions, although there are no con-
straints on mask choosing. It is crucial to note that malicious clients are
explicitly prohibited from controlling with the normal training process
of other benign clients.

On the other hand, benign clients are assigned with only a clean
local dataset and are entirely unknown about the network topology and
the any information of other clients. Besides, they do not allow any
information sharing between benign clients except model fragments.
Similarly, the model fragments of benign clients must adhere to system
constraints and satisfy Uieg, {m;} = J, where J is a matrix of ones,
ensuring that all local model parameters of benign clients can learn
knowledge from other benign clients. Finally, all important symbols
used in the paper are summarized in Table 1.

4. BE-FEEL with fragment-sharing

In this section, we introduce our backdoor resilient FEEL with
fragment-sharing (BR-FEEL) approach in detail. We begin by discussing
the primary challenges encountered in approach design and subse-
quently propose corresponding solutions to address these challenges.
Finally, we give a comprehensive description of the BR-FEEL approach.
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4.1. Challenges and solutions

In the design of backdoor resilient FEEL with fragment-sharing
approach, the primary challenges arise from the following three as-
pects: Firstly, we consider a general backdoor attack adversary with-
out imposing any restrictions on it, except for prohibiting control
over benign clients during normal training. Besides, we do not re-
quire benign clients to possess any prior knowledge or cooperation
capabilities. Our threat model is more powerful and places stronger
constraints on benign clients compared to previous work. Secondly,
evaluating the security of model fragments becomes challenging. No-
tably, most previous backdoor detection and defense work is centered
around full model parameters, with few work on detecting or defending
against model fragments that may introduce a backdoor. Thus, the FEEL
with fragment-sharing scenarios heighten challenges for our backdoor
defense. Finally, how to migrate the knowledge from the fragment
model to the local model without introducing a backdoor is a crucial
consideration in the approach design.

Challenge 1: In this paper, we aim to defend against general back-
door attack in FEEL with fragment-sharing, as described in objective
(2), where a malicious client strategically shares a designed model
fragment to introduce a backdoor into the model aggregated by other
benign clients. However, in our FEEL with fragment-sharing approach,
benign clients lack prior knowledge of other clients and are not allowed
to collaborate directly with each other. This constraint renders previous
approaches, which are based on prior knowledge [10-12] or consensus
among benign clients [57,58], ineffective. In summary, the unpre-
dictability of malicious client behavior and the privacy requirements of
FL pose heightened challenges for the design of our backdoor defense.

Challenge 2: In FEEL with fragment-sharing, clients only exchange
a single fragment containing some model parameters. After receiving
fragments from other clients, a benign client lacks the capability to
verify the reliability of these fragments through direct conduct in-
ference [9]. Additionally, malicious model fragments will only show
abnormal behavior when they are embedded in the local model. Be-
nign clients need to test the embedding of multiple combinations of
fragments to prevent the conspiracy behavior of malicious clients,
where only a specific combinations of multiple malicious fragments
are embedded can get a backdoor model. However, validating the
combination of fragments involves an exponentially computing cost,
which is intolerable for the client. Consequently, identifying malicious
fragments and mitigating their effects becomes extremely challenging.

Challenge 3: Effectively transferring knowledge from model frag-
ments shared by other clients to the local model is a key consideration
of benign clients. On the one hand, model fragments are only available
after being embedded in the local model. On the other hand, embedding
model fragments introduces the hidden danger of backdoor. In the
FEEL with fragment-sharing proposed in [7], the benign client directly
aggregates the model fragments and trains them locally to achieve
knowledge transfer. But in the existence of backdoor attack, we need
to find a safe way to migrate knowledge, which is very challenging.

Our Solutions: Since we are considering a general backdoor de-
fense, we do not impose too many restrictions on malicious clients and
do not give any prior knowledge to benign clients. Therefore, in our
defense approach, our basis is the general goal of the backdoor attack,
that is, predictive capability of the backdoor model on a clean dataset
should be high, while simultaneously yielding desired outcomes for the
attacker when confronted with input with a trigger. At the same time,
as mentioned in the above challenges, it is almost impossible to verify
model fragments, making it hard to achieve safe global knowledge
transfer. Therefore, we first obtain a twin model using the normal
model aggregation process. Due to the existence of malicious clients,
the twin model is likely to have a backdoor. However, considering that
the backdoor model produces normal results on the clean dataset of
benign clients, we use the twin network as the teacher model to perform
knowledge distillation on the local model. Specifically, the local model
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learns from the true labels of the local dataset and simultaneously
imitates the output of the teacher network to obtain global knowledge.
Through knowledge distillation, we effectively transfer global knowl-
edge to the local model without introducing a backdoor, strengthening
the resilience of our defense approach.

4.2. Algorithm description

For each benign client k € S, its process in BR-FEEL is given in
Algorithm 1. Similar to the Vanilla FEEL with fragment-sharing, BR-
FEEL approach can also be divided into three main stages. Initially, the
benign client k utilizes the twin network 6, as the teacher model to
perform knowledge distillation on the local model, involving E local
epochs. Each epoch employs multiple mini-batch stochastic gradient
descents on the complete local dataset D,. Specifically, for a non-
repeating mini-batch B randomly sampled from D,, the local objective
is expressed as follows:

minF(0,) = (1 —y) - f(Oy; B) + v fxp(Oy; B)

1
= > L),
| |{x§63 o @

1

s.t. f(0,: B) =

fxpO B = — ' Lp(z(0):%), 200, %) T).

|BI {x.y}eB

In the above equation, y is a hyperparameter adjusting the weight be-
tween local learning and knowledge distillation. Here, z(6; x) represents
the last-layer output vector of deep neural network # when processing
the input x, known as soft logits. T is the temperature coefficient,
softening the logits extract more informative dark knowledge from
the teacher model [36]. L, is the classification loss function, such as
cross-entropy. Ly reflects the discrepancy between the two results,
often measured using Kullback-Leibler (KL) divergence. In the local
knowledge distillation stage, the benign client continuously optimizes
the local model 6, to achieve the goal in (4). Local model needs
to simultaneously learn local knowledge, enhancing performance on
the local dataset, and imitate the teacher network’s output results to
transfer global knowledge.

Next, in the model fragment-sharing stage, the benign client k
acquires a model fragment based on the latest local model and its mask,
sharing it with other clients. Notably, this stage is the same with that
in the FEEL with fragment-sharing.

Finally, in the model fragment aggregation stage, the benign client
aggregates received model fragments into a new twin network. For
each dimension e of the local model parameters, the client averages
the parameters of the eth dimension with those included in the received
sparse model. The algorithm employs the function Z() to determine the
number of participants sharing the eth dimension parameter, where ()
is a function judging whether the input is 1. The average parameters
for the eth dimension are then computed.

Compared with vanilla FEEL with fragment-sharing, BR-FEEL pri-
marily differs in the local training process and model aggregation stage.
In the local training process, BR-FEEL does not directly use the aggre-
gated model for training on the local dataset. Instead, it adopts a twin
network as the teacher network for knowledge distillation, allowing the
local model to learn both local and global knowledge simultaneously. In
the model aggregation stage, BR-FEEL does not employ the aggregated
model as the starting point for the next local training round. The
aggregated model serves as a new twin network for the subsequent
round of local training. Through FL iterations, the global knowledge
of the twin network steadily improves, helping to enhance the global
knowledge of local model. Although the twin network is a backdoor
model, since the benign client does not have poisoning data sets, the
twin network can always give a good output result for an input without
a trigger, which implies benign global knowledge can be acquired by
local model by imitating the twin model.
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Algorithm 1: BR-FEEL for Benign Client k
Input: clean dataset D, mask my,
initial model 02’0, initial twin model §°
Output: a clean local model without backdoor 6,
1 fortr=0,1,2,.. do

2 fori=0,1,2,,..E—-1do
3 for each mini-batch B € D, do
4 | 6, =0,"—n;'VF(0,'; B), where Fy is defined in (4);
Litl _ pti.
5 6'k = 6'k ;
// Local knowledge distillation stage

A +.E .
6 0, = 0’& O my;
7 Share 9,’( to all other clients;

8 Receive 0:’ from other client i for i € V' \ {k};
// Model fragment sharing stage
9 for each dimension e =0,1,2,...,d — 1 do

10 count = Y 1(é§)+1;
ieV\{v}
1 0 @) =@+ Y 0/(e)/(count);
ieV\{v},
1(6)==

// Model fragment aggregation stage

Table 2
A summary of important settings in experiment.

CIFAR-10 [18], GTSRB [19]
Model ResNet-34 [59], MobileNetV2 [60]

BadNet [20], Blend [21], Dynamic [22]
Trojan [23], Adaptive_patch [24]

Dataset

Attack Baselines

No Defense [7], Median [13],
Geometric Median [25]
Norm Clipping [26], BR-FEEL

Defense Baselines

N =10,E=3,e€{0.1,0.2,0.5,0.9}

FEEL Settings
D, € {0.1,1, 10,1000}, 7 = 0.0001

5. Experiment

In this section, the numerical results of our BR-FEEL approach are
presented. We comprehensively evaluate the performance of BR-FEEL
under different attack methods and visualize the key results in the
experiment. At the same time, the impact of proportion of malicious
clients and the data distribution are also discussed in this section.

5.1. Experiment settings

Our entire experiment implemented using a Python program with
the support of PyTorch [61], aiming to perform a computer vision
classification task through federated learning. All experiments are con-
ducted on a Linux machine equipped with 6 NVIDIA GeForce RTX
4090s and 192 GB main memory. The implementation is carried out in
Python 3.9, utilizing CUDA for parallel computing [62]. The important
experimental parameter settings are given as follows and summarized
in Table 2.

Dataset and Model. Two common datasets, CIFAR-10 [18] and
GTSRB [19], are considered. The training of the image classification
adopts the ResNet-34 [59], a widely used deep residual network. It
is defined by calling package torchvision.models.resnet34. To compare
the impact of different models on the experimental results, we also
considered the MobileNet-V2 network [60], which is a lightweight
network commonly deployed on mobile and embedded devices.

Attack Baselines. To facilitate malicious clients in executing back-
door attacks on benign clients, they obtain a backdoor model through
data poisoning. Five effective data poisoning methods, namely Bad-
Net [20], Blend [21], Dynamic [22], Trojan [23], and Adaptive_patch
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(¢) Blend.

(a) Original.

(b) BadNet.

(d) Dynamic. (e) Trojan. (f) Adaptive_patch.

Fig. 3. Visualization result of different data poison methods.

Table 3

Model fragment distribution in FL when e = 0.2. The bold part represents the
information of malicious clients. During the training process, benign clients update
all parameters, while malicious clients fine-tune the specified parameters.

Parameters partitioning Training parameters Client ID
Convl, Layerl, Layer3 All Layers 2,6
Bnl, Layer2, Layer3 All Layers 3,7
Convl, Layerl, Layer4 All Layers 4,8
Layer2, Layer4, FC All Layers 59
Layer1, Layer3, FC Convl, Layerl, Layer3, Layer4, FC 0
Convl, Layer3, Layer4 Convl, Layerl, Layer3, Layer4, FC 1

[24], are considered in this paper. A visualization result of different
data poison method on a sample in CIFAR-10 is shown in Fig. 3.
Specifically, these methods embed specific triggers in samples from
the clean dataset and tamper with their true labels, which can embed
specific triggers for samples in the clean dataset and tamper with their
true labels. The data poisoning rate is set to 20%, and labels are
modified following the all-to-one pattern, wherein the real labels of all
poisoned samples were altered to the same target label. Considering
that in FEEL with fragment-sharing, malicious clients can only share
some parameters of the model, using only data poisoning may reduce
the effectiveness of backdoor attacks. In order to improve the effective-
ness of the attack, malicious clients are allowed to control the local
training process. Specifically, after receiving model fragments from
other clients, a malicious client k£ will fine-tune only the parameters
with their corresponding values in U m; equal to 1, while freezing
the parameters of other parts [63]. This approach can effectively embed
the backdoor in multiple model fragments of the malicious client.

Defense Baselines. Considering that almost no existing work con-
siders how to perform backdoor defense under FEEL with fragment-
sharing, we carefully selected some In-AD defense strategies that can
be directly transferred to this scenario. Because the fragment-sharing
and decentralization fails most Pre-AD and Post-AD defense strategies.
Firstly, Vanilla FEEL [7] is considered for a comprehensive comparison
of effects before and after defense. Additionally, Median [13], Geomet-
ric Median [25], and Norm Clipping [26] are introduced for fragment
backdoor defense. Both Median and Geometric Median employ ro-
bust aggregation strategies. Specifically, when a benign client receives
fragments shared from another client, median and geometric median
statistics are used for each dimension of the model to obtain a robust
result by removing extreme values. Norm Clipping, on the other hand,
is a defense strategy based on differential privacy. When a benign client
shares its model fragment, it first applies norm regularization and then
adds some Gaussian noise to perturb the shared parameters. Finally,
BR-FEEL defense, based on knowledge distillation, is implemented to
comprehensively compare the performance of these defense strategies
under different attacks.

FEEL Settings. A decentralized FEEL scenario is considered, com-
prising 10 clients, with a fully connected network utilized between
clients to share model fragments. The proportion of malicious clients
e is varied at values of 0.1,0.2,0.5,0.9. Each client use the Dirichlet
function with parameter D, = 1,5,10,1000, to obtain a subset of

the entire dataset. The parameter D, reflect the heterogeneity of the
client data distribution, with smaller values indicating stronger data
distribution heterogeneity. All clients undergo 20 rounds of global
training, with each client performing 3 local iterations and a learning
rate of 0.0001. Finally, the model fragment distribution for each client
is summarized in Table 3.

Performance Metrics. The attack success rate (ASR) and clean data
accuracy (CA) [9] are chosen as metrics to evaluate the performance
of backdoor defense. ASR represents the probability that an input with
a trigger is successfully predicted as the target class specified by the
attacker. CA, on the other hand, denotes the probability that clean input
samples without triggers are correctly predicted as their true classes.

5.2. Overall performance of BR-FEEL

In this section, we test the performance of BR-FEEL in detail un-
der different attack methods, different amount of shared parameter-
fragment, different attacker proportions, and different data distribution
situations.

Overall Numerical Results. In this part, we conduct a compre-
hensive evaluation of the performance results of the aforementioned
defense baselines under different attack methods and datasets. Specifi-
cally, we set the proportion of malicious clients ¢ to 0.2, designating
clients 0 and 1 as backdoor attackers. All clients use the Dirichlet
function with D, = 10 to obtain a subset of the CIFAR-10 and GTSRB
datasets. After 20 rounds of the global training process, the average
final ASR and CA results of all benign clients are presented in Table 4.

From the results of CIFAR-10 on ResNet-34, Vanilla FL, Median
and Geometric Median all achieve CA values exceeding 93% under
different attack methods. However, these methods prove ineffective
against BadNet, Dynamic, Trojan, and Adaptive_patch attacks, resulting
in ASR values exceeding 97%. Such poor performance is unacceptable,
indicating that the aforementioned three methods are not effective in
resisting most backdoor attacks. Notably, in the Blend attack, Median
reduces the ASR by approximately 3.5% compared to Vanilla FEEL,
while Geometric Median increases the ASR by about 10% compared
to Vanilla FEEL. This highlights that defense strategies based on robust
aggregation may only be effective under specific attack methods and
data distributions. Norm Clipping, on the other hand, exhibits a low
ASR of no more than 15% under five attack methods, especially un-
der the Dynamic attack, achieving an extremely low ASR of 1.225%.
However, the introduction of Gaussian noise in differential privacy
also compromises the usability of model, with a CA of no more than
46% under five attack methods. Compared to the first three defense
strategies, ASR and CA of Norm Clipping are reduced by at least 85%
and 48% on average, respectively. In contrast, our BR-FEEL achieves
the lowest ASR of no more than 2.5% and a CA of more than 87.5%
under five attacks. Compared with the other four methods, it achieves
an average ASR of 1.85% and a clean test rate of 87.67%, achieving a
balance between defense and usability.

Similar trends are observed in GTSRB. Although Vanilla FEEL,
Median, and Geometric Median achieve a high average CA of more
than 96%, their ASR also exceeds 97%, raising concerns about the
security. Surprisingly, Norm Clipping, while also achieving a lower
ASR of 11.711%, shows a significant drop in CA. Compared to the
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Table 4
A overall performance of different defense baselines.
Dataset Model Attack Vanilla FEEL Median Geometric median Norm clipping BR-FEEL
ASR | CA 1 ASR | CA 1 ASR | CA 1t ASR | CA 1t ASR | CA 1
BadNet 64.567 71.708 59.022 73.301 58.046 72.504 8.908 13.529 2.281 65.298
Blend 29.661 72.656 23.072 72.503 24.072 72.443 13.615 16.771 2.424 66.221
MobileNet-V2 Dynamic 5.796 72.068 17.799 71.866 9.361 71.048 2.949 14.048 2.231 67.224
Trojan 67.276 73.195 58.481 72.268 64.551 72.611 20.704 17.169 2.201 66.547
Adaptive_patch 29.751 71.981 46.061 72.849 47.694 71.063 20.844 15.824 2.569 66.485
CIFAR-10 Average 39.4102 72.322 40.877 72.558 70.745 71.934 13.404 15.472 2.341 66.355
BadNet 99.999 93.466 99.935 93.383 100.000 94.049 11.579 41.246 1.889 87.758
Blend 79.793 93.381 76.249 92.443 98.129 94.136 5.839 45.536 2.435 87.566
ResNet-34 Dynamic 99.451 93.532 99.161 93.459 99.919 99.901 1.225 46.391 0.832 87.581
Trojan 99.944 93.213 99.949 92.511 100.000 94.336 9.439 45.136 2.311 87.885
Adaptive_patch 97.318 93.331 97.351 92.822 100.000 93.831 14.704 43.912 1.772 87.558
Average 95.301 93.385 94.529 92.924 99.611 95.251 8.558 44.444 1.848 87.670
BadNet 89.641 88.112 98.474 86.269 82.786 89.021 9.695 18.647 2.747 81.645
Blend 29.096 87.561 65.319 89.129 74.866 88.139 1.546 9.572 2.738 81.946
MobileNet-v2 Dynamic 35.405 88.521 47.184 89.906 50.469 88.367 4.201 8.441 2.213 81.952
Trojan 79.983 86.961 77.551 87.027 93.185 88.524 15.197 5.866 2.566 80.124
Adaptive_patch 76.351 88.276 76.281 89.329 91.105 89.529 12.454 6.749 2.881 80.993
GTSRB Average 62.024 87.886 72.962 88.332 78.482 88.716 8.583 9.819 2.629 81.332
BadNet 87.521 98.708 100.000 97.898 100.000 97.309 13.339 17.725 1.244 80.795
Blend 96.703 98.675 98.004 97.491 98.687 96.731 18.713 15.521 2.083 82.966
ResNet-34 Dynamic 99.997 98.263 99.998 95.334 99.734 98.371 7.739 15.336 2.148 81.952
Trojan 100.000 98.793 100.000 98.012 100.000 98.611 9.142 15.498 1.452 83.256
Adaptive_patch 99.978 98.234 96.967 97.913 99.921 97.661 9.621 16.341 0.607 81.786
Average 96.840 98.535 98.994 97.330 99.668 97.665 11.711 16.084 1.507 82.151
Table 5

Model fragment distribution of ResNet-34 under small parameter amounts of the shared
fragments.

Parameters partitioning Training parameters Client ID
Convl, Layerl All Layers 2,6
Bnl, Layer3 All Layers 3,7
Layer2, Layer4 All Layers 4,8
Layer4, FC All Layers 59
Layer3, FC Convl, Layer3, Layer4, FC 0
Convl, Layer4 Convl, Layer3, Layer4, FC 1

Table 6
Model fragment distribution of ResNet-34 under large parameter amounts of the shared
fragments.

Parameters partitioning Training parameters Client ID
Convl, Layerl, Layer3, FC All Layers 2,6
Bnl, Layer2, Layer3, FC All Layers 3,7
Convl, Layerl, Layer4, FC All Layers 4,8
Layer2, Layer3, Layer4, FC All Layers 59
Layerl, Layer2, Layer3, FC Convl, Bnl, Layerl, Layer2, 0

Convl, Bnl, Layer3, Layer4

Layer3, Layer4, FC
Convl, Bnl, Layerl, Layer2,

Layer3, Layer4, FC

average CA in CIFAR-10, there is a decrease of approximately 28%.
Nevertheless, our BR-FEEL consistently exhibits the lowest ASR with
an average of 1.507%, while achieving a high CA with an average
of 82.151%. These results demonstrate that BR-FEEL effectively resists
various attack methods and displays robust adaptability across different
datasets.

Similar results are also verified under MobileNetV2. BR-FEEL main-
tains an extremely low ASR of about 2% on the CIFAR-10 and GTSRB
datasets. This shows that our BR-FEEL is a more general backdoor
defense strategy that does not depend on a specific network model.
However, due to the reduction in the number of network parameters,
the CA of all defense baselines has dropped significantly.

Visualization results of BR-FEEL. To give a more intuitive com-
parison of the effectiveness of various backdoor defense strategies, we
randomly select a local model from both a benign client and a malicious
client after global training on the CIFAR-10 dataset and using the
BadNet backdoor attack method, with the same settings in Table 4. We
employ class activation mapping (CAM) [64] to visualize the feature
attention distribution of these two models when facing a sample with
a trigger. The results are depicted in 4 and 5.

In CAM, regions with brighter color are considered more crucial
features contributing to classification results. As observed in Fig. 4(a),
4(b), and 4(c), important features extracted from a benign client under
Vanilla FEEL, Median, and Geometric Median defenses, when presented
with an image of a horse containing a trigger, focus on the lower right
corner of the image where the trigger is located. This suggests that
a benign client under these defense strategies, when facing an input
with a trigger, primarily classifies it based on trigger-related features,
neglecting important benign features. Similar trends can be identified
in the corresponding malicious counterpart images shown in Fig. 5(a),
5(b), and 5(c). This aberrant behavior is the primary reason why these
three defense methods achieve high ASR under the BadNet attack.
For Norm Clipping, as depicted in Fig. 4(d), the addition of Gaussian
noise disrupts the attraction of benign clients towards trigger-related
features in the lower right corner when faced with an input containing
a backdoor. Simultaneously, Fig. 5(d) illustrates that the introduction
of Gaussian noise also hampers the backdoor attack from the malicious
client, resulting in extracted features that are not concentrated near the
trigger when presented with an input containing a trigger. However,
from a numerical perspective, the addition of Gaussian noise also
diminishes the effectiveness of feature extraction by benign clients,
leading to a low CA. In BR-FEEL, Fig. 4(e) indicates that for an image
of a horse with a trigger, the features extracted by the benign client
focus on the face, which are appropriate features for helping the model
identify horses. Conversely, in Fig. 5(e), the extracted features of the
malicious client are concentrated in the lower right corner of the image,
indicating that the trigger is regraded more important than other parts
of the horse, revealing a backdoor behavior.

Through visual comparison, it becomes evident that our BR-FEEL
effectively prevents benign clients from learning incorrect features,
thereby achieving an extremely low ASR.
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(a) Vanilla FEEL. (b) Median.

(c) Geometric Median.
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(d) Norm Clipping.

Fig. 4. CAM Of benign client facing a sample with trigger under different defense methods.
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(a) Vanilla FEEL. (b) Median. (¢) Geometric Median. (d) Norm Clipping. (e) BR-FEEL.
Fig. 5. CAM Of backdoor client facing a sample with trigger under different defense methods.
Table 7
Overall performance of different backdoor defense baselines under varying amount of fragment sharing parameters on CIFAR-10.
Fragment setting Vanilla FEEL Median Geometric median Norm clipping BR-FEEL
ASR(%)| CA(%)1 ASR(%)| CA(%)1 ASR(%)| CA(%)1 ASR(%)| CA(%)1 ASR(%)| CA(%)1
Small 97.259 92.825 96.983 91.784 88.649 92.814 24.072 23.345 1.757 87.383
Middle 99.999 93.446 99.935 93.383 100.000 94.049 11.579 41.246 1.889 87.758
Large 100.000 93.661 99.992 93.452 100.000 93.586 26.357 20.823 1.931 88.023

Impact of different amount of shared parameter-fragment. In
FL with fragment sharing, the amount of parameters in the shared
fragments is a critical factor. Therefore, based on the fragment division
of ResNet-34 in Table 3, we further reduced and increased the amount
of parameters in the shared fragments. We refer to the parameter
amounts of the shared fragments from small to large as Small, Middle,
and Large, with the model divisions for Small and Large given in
Tables 5 and 6. In this experiment, the Dirichlet parameter D, is fixed
at 10, the proportion of malicious clients ¢ is fixed at 0.2, and the
attack method used is BadNet. Table 7 shows the ASR and CA results
of various defense baselines under different sizes of shared fragment
parameter amounts.

From the experimental results, it can be seen that as the amount of
shared parameters increases, the ASR of benign clients also increases
accordingly. This is because the attacker can share more parameters,
meaning they can embed the backdoor in a larger parameter space.
However, our BR-FEEL still demonstrates strong backdoor defense ca-
pabilities, with the ASR showing almost no change despite the increase
in shared parameter amounts. Additionally, we note that as the shared
parameter amount increases, the number of learnable parameters also
increases, thus the CA of most defense baselines gradually increases as
well.

Impact of various proportion of malicious clients. We explore
the impact of the proportion of malicious clients, denoted as ¢, on
BR-FEEL. Specifically, we utilize the Dirichlet function with D, = 10
to partition the CIFAR-10 dataset, observing changes in ASR and CA
as the number of training rounds increases for varying values of ¢ =
0.1,0.2,0.5,0.9. It is important to note that we designate clients with
smaller IDs as attackers, as specified in Table 3.

As can be seen from Figs. 6(a), 6(b), 6(c) and 6(d), as the proportion
of malicious clients ¢ increases, the convergence speed of ASR of
Vanilla FEEL, Median and Geometric Median significantly accelerates.

For example, when ¢ = 0.1, Vanilla FEEL reaches nearly 100% ASR
in 80 training rounds. However, with e = 0.9, this result is achieved in
less than 10 training rounds. This trend indicates that as the proportion
of malicious clients increases, the effectiveness of backdoor attacks
is significantly enhanced, making backdoor defense more challenging.
Similar results are observed for Norm Clipping. When the proportion
of malicious clients does not exceed 0.5, Norm Clipping maintains a
low ASR, averaging no more than 20%. However, with ¢ = 0.9, its
ASR converges to close to 100% after a large fluctuation. In contrast,
our BR-FEEL maintains an ASR of no more than 2% under various
proportions of malicious clients, demonstrating its robust backdoor
resilience. As shown in Figs. 6(e), 6(f), 6(g), and 6(h), the CA of most
defense strategies remains robust to varying proportions of malicious
clients, achieving similar convergence speed and final performance.
Specifically, Vanilla FEEL, Median, and Geometric Median can reach
a CA close to 95% after about 10 rounds of training, which is ap-
proximately 8% higher than that of our BR-FEEL. Interestingly, as the
proportion of malicious clients increases, the CA of Norm Clipping also
rises accordingly.

In summary, the increase in the proportion of malicious clients
enhances the effectiveness of backdoor attacks, with a relatively minor
impact on CA. The experimental results also confirm that our BR-
FEEL consistently achieves an extremely low ASR of no more than
2% under varying settings of malicious client proportions, effectively
demonstrating its resilience against backdoor attacks.

Impact of data distribution. In this part, we explore the impact
of client data distribution on our BR-FEEL. Specifically, we fix the pro-
portion of malicious clients, denoted as ¢, to 0.2, meaning that clients
0 and 1 employ BadNet for backdoor attacks. By setting the Dirichlet
parameter D, = 0.1, 1, 10,1000, we can obtain distributions of CIFAR-
10 data with different degrees of heterogeneity, and test the changes in
ASR and CA of various defense strategies under these distributions with
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Fig. 7. ASR And CA under various data distribution D,.

the number of training rounds increasing. The experimental results are
shown in Fig. 7.

As observed from Figs. 7(a), 7(b), 7(c) and 7(d), the enhanced
heterogeneity of client local data distribution will lead to a decrease in
the attack effectiveness of malicious clients. Specifically, under D, =
0.1, that is, under the strong heterogeneous data distribution, Median
can achieve close to 100% ASR after about 90 rounds of training.
However, the same result is achieved within no more than 20 rounds
of training under D, = 1000, where the data is nearly independent and
identically distributed. Similar situations are reflected in Vanilla FL and

10

(h) CA for D, = 1000.

Geometric Median. For Norm Clipping and BR-FEEL, they show lower
CA under different levels of data distribution. Specifically, Norm Clip-
ping maintains an ASR of no more than 20% under four distributions.
Our BR-FEEL can maintain an ASR of no more than 2% under four
distributions, which reduces the ASR by 18% ~ 98% compared to the
other four defense baselines. This is because the attacker uses local
data to conduct poisoning attacks. When the data distribution of the
attacker and the defender is too different, the effect of data poisoning
will be weakened. Therefore, when the data distribution of the client
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becomes similar, the attacker is easier to conduct data poisoning, which
enhances the backdoor attack capability.

Data distribution also has a great impact on CA. As can be seen
from Figs. 7(e), 7(f), 7(g) and 7(h), as the data distribution becomes
homogeneous, the convergence speed and final performance of CA
are significantly improved, which aligns with the general behavior
of federated learning in heterogeneous data environments [65]. For
example, when D, = 0.1, the best-performing vanilla FEEL can only
achieve 60% CA after 90 epochs of training. However, when D, = 1000,
CA can converge to 95% after only 10 rounds of training.

On the other hand, we can see from Fig. 7(e) that the shadow
area near the curve of each attack method is larger, which means
that in the case of strong heterogeneity, the variance of CA between
benign clients is large. On the other hand, in Fig. 7(e), the shadow
area near the curve of each attack method is larger, indicating that in
the case of strong heterogeneity, the variance of CA between benign
clients is large. In Fig. 7(h), the shadow area is significantly reduced,
showing that the heterogeneity of data distribution will lead to a
larger variance in model CA between clients. Through a comparison
between baselines, we find that under different data distributions, the
three defense strategies Vanilla FEEL, Median, and Geometric Median
can achieve the highest CA, slightly ahead of our BR-FEEL. As data
homogeneity increases, this gap gradually narrows. At D, = 1000, the
difference between the two is about 8%.

In summary, the strong heterogeneity of data distribution leads to
the degradation of ASR and CA of other baselines. However, our BR-
FEEL can still maintain the lowest ASR of 2% ~ 7% and high CA of
40% ~ 90% under various data distributions, fully demonstrating the
effectiveness of its backdoor defense.

6. Conclusions

This paper addresses the vulnerability of backdoor attack in feder-
ated edge learning system with fragment-sharing. Specifically, we pro-
pose backdoor resilient federated edge learning (BR-FEEL) approach,
enabling benign clients to acquire global knowledge without introduc-
ing backdoor. In BR-FEEL, benign clients use twin models to integrate
parameter fragments shared by other clients and as the teacher to
conduct knowledge distillation on their clean dataset. Extensive ex-
periments are conducted on CIFAR-10 and GTSRB using ResNet-34.
Numerical results reveal that BR-FEEL significantly reduces the attack
success rate by more than 90% compared to Vanilla FEEL. In future
work, we will explore the problems of dynamic resources and privacy
leakage faced by BR-FEEL in actual edge network deployment, and
further explore the potential risks of adversarial attacks on BR-FEEL.
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