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Abstract: To efficiently train the billions of parameters in a giant model, sharing the parameter-fragments within

the  Federated  Learning  (FL)  framework  has  become  a  popular  pattern,  where  each  client  only  trains  and

shares  a  fraction  of  parameters,  extending the  training  of  giant  models  to  the  broader  resources-constrained

scenarios.  Compared  with  the  previous  works  where  the  models  are  fully  exchanged,  the  fragment-sharing

pattern poses some new challenges for the backdoor attacks. In this paper, we investigate the backdoor attack

on  giant  models  when  they  are  trained  in  an  FL  system.  With  the  help  of  fine-tuning  technique,  a  backdoor

attack method is presented, by which the malicious clients can hide the backdoor in a designated fragment that

is  going  to  be  shared  with  the  benign  clients.  Apart  from  the  individual  backdoor  attack  method  mentioned

above, we additionally show a cooperative backdoor attack method, in which the fragment of a malicious client

to be shared only contains a part of the backdoor while the backdoor is injected when the benign client receives

all the fragments from the malicious clients. Obviously, the later one is more stealthy and harder to be detected.

Extensive experiments have been conducted on the datasets of CIFAR-10 and CIFAR-100 with the ResNet-34

as  the  testing  model.  The  numerical  results  show  that  our  backdoor  attack  methods  can  achieve  an  attack

success rate close to 100% in about 20 rounds of iterations.
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1　Introduction

Billions  of  parameters  enable  the  giant  models  to
efficiently  address  complex  tasks  with  high

performance.  However,  it  also  prevents  the  giant
models  from  being  applied  in  some  computation/
communication-constrained  scenarios,  e.g.,  the  edge
networks[1, 2].  To  overcome  this  problem,  Federated
Learning  (FL)  with  fragment-sharing  has  been
considered as an efficient paradigm for multiple clients
to  train  a  giant  model  together.  Specifically,  when  a
group of clients cooperatively train a giant model, each
of  them  only  needs  to  train  a  fragment  of  parameters
and share such a fragment with other clients. By doing
this,  each  client  significantly  has  its
computation/communication  overhead  alleviated
without  losing  too  much  performance  on  the  whole
giant  model,  as  has  been proved in  Refs.  [3, 4].  Some
typical  works  include  Refs.  [5, 6].  Specifically,  the
clients  in  Ref.  [5]  only  train  some  tunable  parts  of  a
giant  model  and  share  those  parameters  to  realize  the
federated  fine-tuning  on  a  large  language  model.  In
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Ref.  [6],  a  flexible  FL  paradigm  for  giant  models  is
proposed,  which  allows  each  client  to  share  arbitrary
fragment  of  the  giant  model  with  theoretical  analysis
provided.  Overall,  the  FL  with  fragment  sharing  has
become  a  popular  approach  to  train  a  giant  model  for
multiple clients in a distributed system.

Compared with  the  previous FL works in  which the
machine learning models are fully exchanged, FL with
fragment  sharing  reduces  the  computation  and
communication  thresholds  for  the  clients  to  train  a
giant model cooperatively. Whereas, it also raises some
new problems on the backdoor attacks and defenses on
the model sharing. Specifically, in a general FL process
with full model exchanged, a malicious client can share
an elaborate model or gradient to other clients, so that a
backdoor is injected in the global model[7–9]. We say a
model  is  backdoor  if  it  behaves  normally  on  normal
inputs  while  exhibiting  the  behavior  desired  by  the
malicious clients when facing the inputs with specified
triggers. For example, a backdoor model can classify a
cat  wearing  glasses  as  a  dog  with  the  glasses  as  the
trigger, while it still recognizes a cat without glasses as
a  cat.  Attackers  can  also  use  model  aggregation  to
continuously  infect  other  benign  participants  by
poisoning their own local dataset[10–13]. However, all of
these  attack  methods  inject  backdoor  into  the  entire
model[14, 15], which is not feasible if only fragments are
shared. How to hide the backdoor behind a fragment of
a  model  or  gradient  deserves  further  investigation.
Meanwhile, from the perspective of backdoor defense,
it  also  becomes  harder  for  the  benign  clients  to  detect
the  backdoor  from a  fragment,  when the  full  model  is
not delivered. The existing backdoor detection methods
in  FL[16, 17] based  on  full-model  may  not  work.  For
example,  Trimmed-mean[17] requires  appropriate
trimming of each dimension of the model parameters to
obtain a robust global model. However, under FL with
fragement sharing, there may not be too much overlap
between  individual  fragments,  thus  rendering  this
method unusable.

In this paper, we investigate the backdoor attacks on
giant  model  under  the  FL  framework  with  fragment
sharing.  Specifically,  we  consider  a  decentralized  FL
system  that  contains  a  number  of  benign  clients  and
malicious clients whose goal is to inject backdoor into
the  models  of  benign  clients.  During  the  training
process, the clients share the specified fragments of the
full model at the phase of model sharing. To launch the
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backdoor  attack  only  with  the  fragment  sharing,  we
propose  a  model  parameter  Fine-Tuning-based
Backdoor  Attack  (FTBA)  method.  With  the  above
FTBA  method,  the  malicious  client  can  embed  a
backdoor  into  its  specified  fragment  by  fine-tuning  a
specified  portion  of  the  model  parameters  on  its  local
poisoned dataset, and continuously infects other benign
clients during the model sharing phase.  Meanwhile,  to
alleviate  the  problem  of  degraded  attack  effectiveness
caused by embedding a backdoor into a single specific
fragment,  we  also  propose  a  cooperative  FTBA
(namely )  algorithm.  The  method
enables  multiple  malicious  clients  to  cooperatively
embed a backdoor in multiple specified fragments. The
backdoor characteristics are manifested when and only
when  these  fragments  are  combined  together  on  the
benign  client,  while  individual  fragments  do  not
possess  significant  backdoor  characteristics.  As  a
result,  greatly  increases  the  flexibility  and
stealthiness of backdoor attacks, and is harder to detect.
To summarize, our main contributions are as follows:

● To the best of our knowledge, this paper is one of
the  first  that  studies  the  potential  vulnerability  of
backdoor attacks on giant models in federated learning
with fragment sharing. We hope that our work can shed
some light on the security of FL with fragment sharing
and  help  the  design  of  a  secure  distributed  training
paradigm for giant models.

FTBA∗

●  We  propose  FTBA  method,  which  enables  a
malicious  client  to  embed  a  backdoor  in  a  specific
fragment of the whole model.  This backdoor fragment
can  successfully  perform  backdoor  attacks  on  other
benign  clients.  Meanwhile,  we  also  propose 
method, which can help multiple attackers to carry out
cooperative attacks and transfer backdoor into multiple
model fragments, thus achieving better backdoor attack
results  as  well  as  significantly  increasing  the  stealth
and detection difficulty of backdoor attacks.

● We conduct extensive experiments on the CIFAR-
10  and  CIFAR-100  datasets[18] using  the  ResNet-34
model[19]. The numerical results show that our methods
can successfully embed the backdoor in specific model
fragments  by  fine-tuning  the  model  parameters  for
some  common  backdoor  attacks,  such  as  BadNet[10],
Blend[13], Trojan[20], and Adaptve_patch[12]. In most of
the  experiments,  our  methods  can  achieve  close  to
100% attack  success  rate.  We  also  demonstrate  that
model  parameter  fine-tuning  is  an  effective  means  of
effectively  concentrating  a  backdoor  in  a  specific
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model  fragment  by  designing  a  series  of  comparison
and  ablation  experiments  and  illustrating  neural
network  visualization  results.  These  experiments
effectively demonstrate the correctness and superiority
of our FTBA and  algorithms.

RoadMap. We organize the remainder of this paper
as  follows:  Section  2  introduces  the  related  work  and
Section  3  gives  some  FL  system  descriptions  and  the
problem  statement.  The  backdoor  attack  algorithm  is
shown  in  Section  4.  Finally,  we  conduct  detailed
experiments  and  discuss  the  impact  of  different
parameter  settings  on  the  experimental  results  in
Section 5. Lastly, we conclude this work in Section 6.

2　Related Work

2.1　Backdoor attacks in FL

Since  Bagdasaryan et  al.[7] first  revealed  the  backdoor
vulnerability in FL, a series of backdoor attacks in FL
have  been  proposed  in  the  past  decade.  Overall,
backdoor  attacks  in  FL  can  be  divided  into  two
categories, one is called data poisoning, and the other is
called model poisoning[21].

In  data  poisoning  backdoor  attack,  the  attacker  will
poison the clean dataset by adding a specific trigger to
partial  samples  and  modifying  their  true  label,  so  that
the  normally  training  model  stealthily  contains  a
backdoor[10, 22, 23]. There are various trigger options for
data  poisoning,  such as  a  visible  pixel  block[7, 10, 13, 20]

and  the  invisible  Gaussian  noise[24].  The  broad  trigger
also  encompasses  image  transformations  and  in/out
distribution samples. For example, Nguyen and Tran[11]

used  geometric  transformations  to  deform  images  to
poison the clean samples. Besides, some data poisoning
methods  generate  edge  distribution  or  out-of-
distribution  data  as  triggers  to  mislead  the  model  into
misclassification[25–27].

In  model  poisoning  backdoor  attacks,  attackers
stealthily inject a backdoor to the local/global model in
a certain step of FL. For example, Bagdasaryan et al.[7]

scaled  the  model  during  the  model  aggregation  phase
to replace the global  model  with a  backdoored model.
This  model  replacement  method  is  widely  adopted  in
some  subsequent  work[8, 9].  In  order  to  increase  the
concealment  of  the  replacement  attacks,  Bhagoji
et  al.[28] limited  excessively  giant  model  updates  by
modifying  the  loss  function  in  the  local  training
process  to  evade  defense  measures  based  on  anomaly
detection.

2.2　Fragment-sharing FL

Due  to  the  excessive  amount  of  neural  network
parameters[29],  user  privacy  considerations[30],  or
heterogeneity  considerations[31],  clients  in  FL  may
cannot  share  all  model  parameters  with  other
participants,  where  each  client  can  only  share  a
fragment  of  whole  model.  The  key  issue  in  fragment-
sharing FL is  to find a good fragment to represent  the
whole model or gradient. Therefore, some work make a
trade-off  between  training  efficiency  and
communication  burden  or  privacy  budget  by
considering  these  constraints  in  the  local  optimization
objective to obtain a sparse fragment estimate of local
model  or  gradient[32–34].  Besides,  some  research  has
pointed out that sharing partial parameters of the model
(such  as  convolutional  layers,  batch  normalization
layers,  etc.)  can  help  clients  train  better  personalized
models[35, 36]. However, most of the above methods are
difficult  to  adapt  to  dynamic  resource  FL  scenarios.
Therefore,  Wang  et  al.[6] used  a  mask  to  get  a  sparse
model  for  communication  and  proposed  a  resource-
adaptive  learning  algorithm  under  arbitrary  neuron
assignments  with  theoretical  convergence  guaranteed.
In this paper, our work is carried out on Ref. [6].

2.3　Parameter effective fine tuning

Parameter  effective  fine  tuning  is  considered  an
effective, lightweight means of migrating a pre-trained
giant model to downstream tasks. Common parameter-
effective fine-tuning methods include model parameter
fine-tuning[37],  adapter  fine-tuning[38],  and  Low-Rank
(LoRa) adapters[39]. Model parameter fine-tuning refers
to  freezing  the  parameters  in  the  model  and  only
updating  part  of  the  parameters  during  downstream
task training. It has been proven that fine-tuning a very
small  amount  of  data  can  achieve  transfer  learning
from  the  original  task  to  the  downstream  task[40].
Adapter  fine-tuning  refers  to  adding  some  trainable
parameters  (called  adapters)  between  certain  layers  of
the  neural  network  and  only  updating  the  adapter
during  downstream  task  training.  This  method  is
considered  a  more  flexible  fine-tuning  method  that
does not disrupt the original network structure and has
been  adopted  by  a  large  number  of  subsequent
studies[41, 42]. To further reduce the training parameters
of  the  adapter,  Hu et  al.[39] proposed an  LoRa adapter
and used residual connections to fine-tune the network
parameters.  Compared  with  adapter  fine-tuning,  LoRa
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can  achieve  the  same  model  fine-tuning  performance
with  fewer  training  parameters.  This  method  has  been
widely  used  in  the  fine-tuning  of  large  language
models[43].

3　FL System and Problem Definition

3.1　Decentralized federated learning

N V k
Dk θk

k Bk

|θk |

We consider a decentralized FL system that consists of
 clients,  denoted  by  the  set .  Each  client  has  its

own  local  dataset ,  local  model ,  and  exchanges
data over the network. However, due to user or system
constraints, each client  can only send up to  bits of
data  during  each  communication  process,  which  may
be much less than , especially in distributed training
of  large  language  models[44].  By  training  their  own
models locally and sharing the updates with others, all
clients  will  achieve  the  following  goal  of  our
decentralized FL step by step:
 

min
{θ1, θ2, ..., θN }∈Rd

N∑
k=1

|Dk |
|D| fk (θk; Dk) (1)

fk
k Dk

D = {D1∪D2∪ · · ·∪DN} θk
d k

where  represents  the  local  loss  function  of  each
client  based  on  local  dataset ,  such  as  cross-
entropy  or  mean  square  error  loss.

 is the entire dataset and  is a
-dimensional local model of client .

θ0k

i = 1, 2, . . . k

To optimize  the  objective  of  Formula  (1)  efficiently
under  model  fragment  sharing,  the  clients  take  the
following  synchronized  training  proposed  in  Ref.  [6].
Initially, each client has its own local model . In each
discrete  training  round ,  the  client  first
trains the local model on the local dataset, then sends a
fragment  of  the  model  that  meets  the  network
bandwidth limit to other clients, and finally updates the
local model after receiving other model fragments. The
details  of  the  synchronized  training  are  given  in  the
following:

k
θik fk (θik; Dk)

Dk θ̂ik = θ
i
k −η

i
k∇θik fk (θik; Dk) θik

θ̂ik

k
i ηi

k

∇θik fk (θik; Dk)
fk (θik; Dk)

● Local training: Each client  trains its own local
model  to optimize the loss  on its dataset

,  i.e., ,  where  and  are
the  local  models  of  client  before  and  after  the  local
training  in  round ,  is  the  learning  rate  in  each
iteration,  and  is  the  corresponding
gradient of .

k
θ̄ik mk θ̄ik = θ̂

i
k ⊙mk

mk θik

● Fragment  sharing: Each  client  gets  a  sparse
model  through  mask ,  i.e, ,  where
mask  is a binary matrix of the same size as  with

∥mk∥0 ⩽ Bk ⊙, and “ ” denotes the Hadamard product.
k

θi+1
k = Aggre (∪N

a=1{θ̄
i
a}) Aggre ( )

Aggre ( )

● Fragment aggregation: Each client  aggregates
the  received  sparse  models  and  its  local  model  to
generate a new one that will be used in the next round
local training. In a mathematical formulation, we have

.  The  is  an  abstract
aggregation  function  here.  Specifically,  in  Ref.  [6],
each  client  performs  parameter  averaging  for  each
dimension  of  the  model.  For  convenience,  in  the
remainder of this paper, we use  to refer to the
model  aggregation  method  used  in  Ref.  [6].  The
detailed description is given in Section 4.

By repeating the training rounds for sufficient times,
all  clients  obtain  the  high-accuracy  model  on  its  own
dataset.

3.2　Problem  definition  for  general  backdoor
attack  in  Decentralized  Federated  Learning
(DFL)

Sm Sb

k ∈ Sm θ̃k

θ̃k k ∈ Sm

mk

x
φ (x)

y τ (y)

In  general,  when  considering  federated  learning
scenarios  with  backdoor  attacks,  clients  always  are
divided into two categories: the set of malicious nodes

 and  the  set  of  benign  clients .  For  each  attacker
,  it  sends  a  tampered  model  to  the  benign

clients.  Besides,  considering  the  constrained  network
bandwidth,  sent  by  attacker  must  also  be  a
sparse  model,  and  the  non-zero  position  should  be
consistent  with that  in  the binary matrix .  After  the
benign  clients  take  an  aggregation  according  to  the
legitimate  models  from  other  benign  clients  and  the
tampered  models  from  the  attackers,  the  aggregated
model  may  contain  a  backdoor,  i.e.  the  aggregated
model  behaves  normally  without  trigger  but  acts  in  a
malicious manner when facing triggers. Formally, let 
and  represent  the  clean  and  manipulated  data
sample,  respectively;  and  represent  the
corresponding  true  label  and  target  label  that  the
malicious  node  hopes  to  induce,  respectively.  The
optimization  goal  of  a  general  backdoor  attack  in
decentralized FL is
 

min
∪

k ∈ Sm{θ̃h}

∑
h ∈ Sb,
{x, y} ∈ Dh

fh (θh; {x, y})+ fh (θh; {φ (x), τ (y)}),

s.t., θi+1
h = Aggre ({ ∪

h ∈ Sb
{θ̄ih}}∪ { ∪k ∈ Sm

{θ̃ik}},

∥θ̄ik∥0 ⩽ Bk, θ̄
i
k = θ̄

i
k ⊙mk, ∀ k ∈ Sm,

∥θ̃ih∥0 ⩽ Bi, θ̃
i
h = θ̃

i
h⊙mh, ∀ h ∈ Sm,

∪
i ∈ V

mi =J (2)
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The  optimization  objective  of  the  attackers  includes
two parts. The first loss function encourages the victim
to achieve high prediction accuracy on the clean inputs.
The  second  loss  function  encourages  a  high  attack
success rate when facing inputs with triggers, that is, it
outputs  as  the  attackers  desire.  In  addition,  the  four
constraints  in  Formula  (2)  include  the  constraints  on
model  aggregation  in  DFL  and  the  constraints  on
communication.  Specifically,  the  first  constraint  limits
the  aggregation  method  used  by  clients  in  DFL  when
they have received other models. The second and third
constraints  reflect  the  bandwidth  constraints  of  the
communication  network  and  the  sparsification
constraints,  respectively.  Specifically,  the  transmitted
model  needs  to  satisfy  that  the  number  of  non-zero
elements does not exceed the network bandwidth limit,
and  it  needs  to  ensure  that  the  elements  in  the  mask
corresponding to the position of 1 need to be retained.
The last constraint requires that the union of the masks
of  all  clients  is  a  matrix of  ones ,  which means that
the  parameters  of  each dimension of  the  global  model
need  to  be  trained  by  the  client  to  ensure  the
convergence  of  the  global  model.  In  this  paper,  we
assume  that  the  communication  bandwidth  of  each
client is fixed and its mask does not change.

In  conclusion,  the  main  challenge  of  backdoor
attacks  under  fragment  shared  DFL  is  that  whether  a
benign client or a malicious client, it can only send the
specified  sparse  model  when  sharing  models,  i.e.,  the
last  two  constraints  in  goal  of  Formula  (2),  which  is
also  the  main  difference  between  backdoor  attacks  in
traditional FL.

Our  approach. As  mentioned  above,  the  general
backdoor attack in DFL needs to ensure that the model
trained  by  the  benign  client  accurately  predicts  on
clean  inputs,  and  outputs  the  desired  results  when
facing  inputs  with  triggers.  To  achieve  this,  we  first
generate  a  poisoned  dataset  using  backdoor  attack
methods  based  on  data  poisoning[21],  and  train  the
model  on  this  poisoned  dataset.  In  addition,  due  to
communication  bandwidth  limitations,  attackers  can
only  share  model  parameters  specified  by  the  masks.
Therefore, during training, we use model fine-tuning to
only  fine-tune  the  shared  model  parameters.  More
details  of  the  algorithm  implementation  are  given  in
Section  4.  Finally,  we  summarize  all  important
symbols used in the paper in Table 1.

4　Methodology

In  this  section,  we  will  illustrate  model  FTBA  in
fragment shared DFL in detail. We provide the specific
implementation process of FTBA in Algorithm 1.

In  the  TFBA  algorithm,  the  malicious  client  first
needs  to  generate  a  poisoned  dataset  using  existing

 

Table 1    Important symbols.
Parameter Definition

N Number of clients
V Set of clients
Dk kDataset of client 
θk kModel parameters of client 
Bk kBandwidth limit of client 
fk kLocal loss function of client 
ηk kLearning rate of client 
θ̄k kSparse model of benign client 
θ̃k kSparse model of malicious client 
mk kMask matrix of client 
B Mini-batch of dataset
Sb Set of benign clients
Sm Set of malicious clients
E Epoch number
d Dimension of model parameters

x and φ (x) Clean and manipulated samples
y and τ (y) True label and target label
∇ f (·) f (·)Gradient of function 
⊙ Hadamard product
∥ ∥0 Zero norm

Aggre ( ) Aggregation function

 

FTBA for malicious clinet v
and

h h

each mini-batch B

u u u

each dimension
u

u
u

u

...

...

...
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k Dk

θk = θk −ηk∇θik fk (θk; Dk)⊙mk

E

Dk

θ̃ik = θ
i
k ⊙mk

e

e
e

I ( )
e I ( )

1
e

backdoor  attack  methods  based  on  data  poisoning.
Some  common  data  poisoning  methods  include
BadNet[10],  Blend[13],  Trojan[20],  Adaptive_patch[20],
etc. These methods select a portion of samples from the
clean  dataset,  add  triggers  to  them,  and  replace  their
true  labels  with  the  labels  that  the  attacker  wishes  to
induce. It has been proven that models trained normally
on  this  poisoned  dataset  will  have  backdoor
vulnerabilities[45].  Considering  the  fragment  shared
scenario,  all  participants,  including  malicious  clients,
can only send part of the model specified by the mask.
Therefore,  we  use  model  fine-tuning  techniques  to
embed  the  backdoor  in  the  designated  parameters  of
the model. Specifically, we freeze all parameters in the
local  model  that  are  in  the  same  position  as  the 
elements in the mask, which represents parameters that
will  not  be  shared.  During  the  training  process,  these
frozen  parameters  participate  in  the  calculation  of
forward  inference,  but  they  do  not  conduct  the
parameter  update  during  backward  propagation.
Formally, the model parameter fine-tuning of malicious
node  on  dataset  can  be  represented  as

.  The  malicious  node  will
perform  epochs  of  local  model  fine-tuning,  and  for
each epoch,  it  performs mini-batch  stochastic  gradient
descent on all mini-batches of dataset . In the model
sharing  stage,  the  malicious  client  sends  out  the  fine-
tuned  parameters,  i.e., .  At  the  same  time,
the malicious client will receive sparse models sent by
other participants. Finally, the malicious client uses the
received  sparse  model  for  model  aggregation.
Specifically,  for  each  dimension  of  the  local  model
parameters,  the  malicious  client  will  average  the
parameters  of  the -th  dimension  with  the  parameters
of  the -th  dimension  included  in  the  received  sparse
model. Therefore, in the algorithm, we first need to use
the  function  to  count  the  number  of  participants
who  share -th  dimension  parameter,  where  is  a
function  that  judges  whether  the  input  is .  Then,  it
averages the parameters for -th dimension.

5　Experiment

In  this  section,  we  conduct  extensive  experiments  to
verify  the  effectiveness  of  the  FTBA  algorithm.  We
choose  four  common  data  poisoning  methods  and
launch  backdoor  attacks  on  other  benign  clients
through  model  fine-tuning.  The  experimental  results
prove  that  our  FTBA  algorithm  can  provide  a  bridge
for  most  data  poisoning-based  backdoor  attacks  in

federated  learning  to  be  applied  in  fragment  shared
scenarios.

5.1　Experiment settings for FTBA

Our  whole  experiment  is  developed  by  a  Python
program  with  the  support  of  Pytorch[46] for  computer
vision  classification  task,  which  is  one  of  the  most
commonly  used  libraries  in  deep  learning.  All
experiments  are  conducted  on  a  Linux  machine  with
two  NVIDIA  GeForce  RTX  4090s  and  128  GB  main
memory, implemented in Python 3.9 and using CUDA
for parallel computing[47].

Dataset. We  consider  two  common  visual
classification  datasets,  CIFAR-10  and  CIFAR-100[18],
which  are  both  labeled  subsets  of  the  80  million  tiny
images dataset. The CIFAR-10 dataset includes 60 000
color images of size 32 pixel × 32 pixel. It includes 10
classes,  each with  about  6000 images.  The image size
and  number  of  images  in  the  CIFAR-100  dataset  are
consistent  with  CIFAR-10.  The  difference  is  that
CIFAR-100 includes 100 classes,  each with about 600
images. Therefore, compared to the CIFAR-10 dataset,
the  CIFAR-100  dataset  poses  higher  demands  on  the
learning ability of neural networks.

Model. We  use  the  classic  residual  neural  network
ResNet-34  for  model  training[19].  ResNet-34  is  a
convolutional neural network model that consists of 34
layers.  It  has  a  total  of  approximately  21.8  million
parameters[48].  In  the  specific  implementation,  we  use
ResNet-34  that  has  been  defined  by
torchvision.models.resnet34  for  training,  and  its
network architecture is shown in Fig. 1.
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Block 0

Block 2
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Layer 4
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Fig. 1    Schematic diagram of the architecture of ResNet-34.
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1+ (2 × 3+2) × 4+1 = 34

As can be seen from the Fig. 1, a standard ResNet-34
consists of a convolutional layer, four basic layers, and
a linear  layer.  Each basic  layer  includes  three residual
blocks  and  two  down-sampling  layers.  Each  residual
block  contains  two  convolutional  layers  and  is
connected by residual connections. The entire network
has  a  total  of  layers  of
learnable parameters.

δ = 1

FL  settings. We  consider  a  decentralized  federated
learning scenario with 10 clients, including 2 malicious
clients.  Each  client  obtains  a  Non-IID  subset  of  the
dataset through a Dirichlet function with [49].  The
Dirichlet  function represents a multivariate probability
distribution  characterized  by  a  vector  of  positive  real
values.  It  serves  as  a  tool  to  partition  the  original
dataset  into  distinct  subsets,  each  exhibiting  varying
degrees  of  heterogeneity.  Sampling  from the  Dirichlet
function  yields  a  collection  of  proportions,  facilitating
the  segmentation  of  the  CIFAR-10  or  CIFAR-100
dataset.  Consequently,  each  subset  encompasses  a
diverse  mix  of  images  from  different  classes,  thereby
establishing  a  heterogeneous  distribution.  All  clients
undergo 10 rounds of global training, with each round
of global training involving 5 epochs of local iterations,
and the batch size is 64. Each client optimizes the local
objective  using  the  Adam  optimizer  with  an  initial
learning  rate  of  0.001.  Due  to  communication
constraints,  each  client  can  only  share  part  of  the
ResNet-34  parameters.  The  shared  parameters  of  all
clients are shown in Table 2.

Data poisoning methods. Since the FTBA algorithm
needs to first obtain a poisoned dataset. We implement
data  poisoning  using  BadNet[10],  Blend[13],  Trojan[20],
and Adaptive_patch[12],  and the poisoning rate is 20%.
For  label  modification,  we  adopt  an “all-to-one”
approach, that is, modify all correct labels to the same
label.  In  order  to  compare  their  differences  more
intuitively,  we  visualize  these  four  poisoning  methods
in Fig.  2.  The  triggers  of  the  four  data  poisoning
methods are different. Specifically, BadNet and Trojan
add  a  black  and  white  or  color  mosaic  pixel  block  to
the  original  airplane  image.  In  Blend,  the  trigger  is  a
Hello Kitty picture that is the same size as the original
picture.  The  trigger  of  Adaptive_patch  is  calculated
through an adaptive method, making it more difficult to
detect with the naked eye. The above-mentioned attack
methods  are  implemented  in  the  backdoor  benchmark
platform developed by Li et al.[50]

Evaluation metrics. In the research about backdoor
attacks,  the  following  two  metrics  are  considered:  the
Attack  Success  Rate  (ASR)  and  Clean  data  Accuracy
(CA)[21].  The  former  refers  to  the  probability  that  an
input  with  a  trigger  is  successfully  predicted  as  the
target  class  specified  by  the  attacker.  The  latter  refers
to  the  probability  that  clean  input  samples  without
triggers are correctly predicted as their true classes. For
a  successful  backdoor  attack  strategy,  the  backdoor
model should have a high ASR and CA.

5.2　Overall performance of FTBA

In this section, we verify the performance of our FTBA
algorithm  through  multiple  sets  of  experiments.  We
also discuss the impact of the proportion of parameters
being attacked on the attack effect.

Numerical results. We first demonstrate the changes
in  the  ASR  and  CA  of  all  benign  local  models  under
the CIFAR-10 and CIFAR-100 datasets with the FTBA
algorithm  as  the  number  of  training  rounds  increases.
The experimental results are shown in Fig. 3.

 

Table 2    Model  partitioning  in  DFL.  The  bolded  part
represents  the  information  of  malicious  clients.  During  the
training process, benign clients update all parameters, while
malicious clients fine-tune the specified parameters.

Parameters partitioning Training parameter Client ID
Conv1, Layer 1, Layer 2 All layers 5, 6, 8

Layer 2, FC All layers 2, 3
Layer 1 All layers 4, 7, 9

Layer 3, Layer 4, FC Layer 3, Layer 4, FC 0, 1

 

(a) Original image (b) BadNet (c) Blend (d) Trojan (e) Adaptive_patch 
Fig. 2    Visualized results of different data poisoning methods for an airplane sample in CIFAR-10.
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From Fig. 3, it can be seen that whether in CIFAR-10
or  CIFAR-100  dataset,  our  FTBA  algorithm  can
quickly  achieve  a  high  ASR  for  all  four  attack
methods.  Specifically,  for  the  BadNet,  Trojan,  and
Adaptive_patch  attack  methods,  they  can  quickly
converge  and  achieve  close  to  100% ASR  within  the
first  20  training  epoch.  For  the  Blend  attack  method,
although  its  convergence  speed  is  slower,  it  also
achieves  an  ASR  of  over  60% in  the  20th  round  and
can reach an ASR of over 90% in the final 100 rounds.
At  the  same time,  we  notice  that  the  FTBA algorithm
can still maintain a high clean test rate while achieving
a  high  ASR.  On  the  CIFAR-10  and  CIFAR-100
datasets,  all  four  methods  achieve  a  test  accuracy  of
over 90% and close to 80%,  which is  close to the test
accuracy of the model trained normally.

Feature  visualization  results. To  more  intuitively
demonstrate  the  attack  effect  of  the  FTBA  algorithm,
we  compare  the  feature  distributions  of  the  local
models  of  benign  clients  and  malicious  clients.
Specifically, we conduct experiments on the CIFAR-10
dataset  using  four  different  attack  methods.  We
randomly  select  a  benign  and  a  malicious  client  and
visualize  the  feature  distribution  of  their  local  models
for  benign  inputs  and  inputs  with  triggers  after  100
rounds  of  training.  For  the  ResNet-34  model,  we  use
the output of Layer 4 in Fig. 2 as the features extracted
from  the  corresponding  input  images,  and  use  t-
distributed stochastic neighbor embedding[51] to reduce
the  features  to  a  two-dimensional  plane  for
visualization.  The  visualization  results  are  shown  in
Fig. 4.

It  can  be  seen  that  the  Trojan  and  Adaptive_patch
attack  methods  show  a  more  significant  difference  in
feature  level  for  clean  inputs  and  inputs  with  triggers.
At the same time, we can find that the FTBA algorithm
can migrate this characteristic to the local model of the

benign  client.  However,  for  the  BadNet  and  Blend
attack methods, clean inputs and inputs with triggers do
not  show  a  strong  difference  at  the  feature  level,  and
this characteristic is also reflected in the local model of
the benign client.

Therefore,  from  the  perspective  of  feature
visualization,  our  FTBA  algorithm  can  effectively
migrate the features of the backdoor model to the local
models  of  other  benign  clients,  which  also  proves  the
effectiveness of the FTBA backdoor attack.

Effectiveness  of  fine-tuning. In  this  section  of  the
experiment,  we  validate  the  effectiveness  of  model
parameter  fine-tuning.  Specifically,  we  compare  the
ASR  and  CA  of  the  local  model  trained  by  the
malicious  client  under  the  conditions  of  model
parameter fine-tuning and full parameter training as the
number  of  training  epochs  change.  The  experimental
results  are  shown  in Fig.  5,  From  which,  it  can  be
clearly  seen  that  fine-tuning  part  of  the  parameters  of
ResNet-34  (Layer  3,  Layer  4,  and  FC)  and  full
retraining  do  not  show  significant  differences  in
convergence  speed  and  final  accuracy.  This  fully
demonstrates the effectiveness of model fine-tuning.

BadNet+

BadNet−

BadNet−−

Impact  of  the  proportion  of  parameters  being
attacked. In the FTBA algorithm, a key indicator is the
proportion  of  parameters  that  the  attacker  can  send,
which  directly  reflects  the  proportion  of  parameters
being  attacked.  Therefore,  in  this  experiment,  we
explore the impact of this indicator on the ASR and CA
of  the  attacked  model  by  changing  the  proportion  of
attacked  parameters.  Specifically,  we  consider  four
different attack proportions, namely  attacking
all parameters of ResNet-34, BadNet attacking Layer 3,
Layer 4, and FC layer,  attacking Layer 4, FC
layer,  and  only  attacking  FC  layer.  The
experimental results are shown in Fig. 6.

From the experimental results, it can be seen that the
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Fig. 3    ASR and CA of benign clients under CIFAR-10 and CIFAR-100.
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Blend−

proportion  of  attacked  parameters  has  a  significant
impact  on  ASR,  but  does  not  affect  the  CA  results.
Specifically,  by  increasing  the  proportion  of  attacked
parameters,  the  efficiency  of  the  attack  can  be
improved. For example, Blend will achieve a faster and
better  attack  success  rate  than .  However,  this
improvement  will  gradually  saturate.  For  example,  for

the  four  poisoning  methods,  the  full  parameter  attack
does  not  produce  any  improvement  compared  to  the
attack on Layer 3, Layer 4, and FC layer. At the same
time, we notice that when only attacking the FC layer,
all four attack methods will fail.

5.3　Discussion about cooperative FTBA

In  the  above  experiments,  we  assume  that  the  layers
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Fig. 4    Feature visualization results under different backdoor attacks for clients.
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Fig. 5    Model fine-tuning vs. model full-training for malicious clients under fragment shared DFL.
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FTBA∗

attacked by the two attackers are the same, as this can
demonstrate  the  best  attack  effect.  However,  in
practical  problems,  it  may  be  difficult  for  FL  systems
to  ensure  that  multiple  attackers  can  attack  the  same
layer.  Therefore,  in  this  section,  we  discusse  how  to
better improve the attack effect by hiding the backdoor
in  multiple  model  fragments.  For  this  purpose,  we
propose  a  cooperative  attack  algorithm ,  which
can  effectively  alleviate  the  problem  of  reduced
backdoor  attack  effectiveness  when  attackers  attack
different  targets.  The  pseudocode  is  shown  in
Algorithm 2.

FTBA∗

mt

FTBA∗ k

mk

mt

Compared  to  the  FTBA  algorithm,  the 
algorithm  needs  to  know  the  mask  of  all  attackers.  It
also  introduces  a  fine-tune  mask  to  guide  the  fine-
tuning  of  local  model,  which  represents  the  attack
parameter  positions  of  all  attackers  (as  shown in  Line
2). Specifically, in , the malicious client  fine-
tunes all the attack targets of all  attackers during local
fine-tuning,  but  only  sends  specific  parameters
specified by the mask  when sending. The fine-tune
mask  reflects  a  consensus  reached by all  attackers,
enabling  cooperative  attacks  under  fragment  shared
conditions among attackers. In a sense, FTBA* allows
attackers  to  conduct  fragment-shared  FL,  which
implements  distributed  backdoor  poisoning  attacks,  so
it is more effective.

FTBA∗To  demonstrate  the  effectiveness  of ,  we
conduct  experiments  by  using  the  CIFAR-10  dataset

FTBA∗

and  ResNet-34.  We  let  Attacker  1  attack  Layer  3  of
ResNet-34,  and  Attacker  2  attack  Layer  4  and  the  FC
layer  of  ResNet-34.  We  compare  the  changes  in  ASR
of  four  attack  methods  under  and  FTBA  with
the  number  of  training  epochs  in Fig.  7.  At  the  same
time,  we  perform  ablation  on  Attackers  1  and  2  to
reflect the effect of cooperation.

From  the  experimental  results,  it  can  be  easily  seen
that  the  cooperative  attack  strategy  FTBA* can
effectively  alleviate  the  problem  of  decreased  attack
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Fig. 6    ASR and CA for benign clients under different proportion of parameters being attacked.
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FTBA∗

FTBA∗

FTBA∗

FTBA∗

effectiveness  when  the  attack  targets  are  inconsistent.
Specifically,  when  the  attack  targets  are  inconsistent,
except  for  the  Blend  attack,  the  other  three  attack
methods have reached a nearly 100% ASR in the first
20 rounds. However, FTBA requires 100 or even more
rounds  of  iterations  to  achieve a  similar  ASR.  For  the
Blend  attack,  has  a  significant  improvement
over FTBA in both attack speed and ASR. At the same
time,  by  comparing  the  ablation  experiments,  we  find
that in the , the model fragments sent by a single
attacker  have  a  weaker  attack  effect  on  the  benign
client,  and  in  most  attack  methods,  they  can  only
produce  an  average  ASR  of  less  than  20%.  This  also
poses  a  greater  challenge  to  the  defense  work  of

 if  the  attackers  achieve  a  specific  attack
combination  consensus.  Therefore,  we  believe  that
when  the  attack  targets  are  inconsistent,  the 
method can achieve better attack results.

6　Conclusion

In  this  paper,  we  show  that  the  backdoor  attacks  still
exist  when  the  giant  model  is  trained  in  federated
learning  with  fragment  sharing.  To  this  end,  we
propose a model fine-tuning-based backdoor attack that
effectively  embeds  a  backdoor  in  a  designated  model
fragment  and  infects  other  benign  clients  during  the
training  process.  Meanwhile,  we  also  propose  a
cooperative  backdoor  attack  strategy,  which  can  hide
the  backdoor  in  multiple  model  fragments,  greatly
enhancing the  effectiveness  and detection difficulty  of
the  backdoor  attack.  We hope  that  our  work  can  raise
concerns  about  the  security  of  federated  learning  for
giant  models  and  inspire  the  design  of  secure
distributed  training  frameworks  for  giant  models.  It  is
worth mentioning that  extending the FTBA method to
dynamic  network  environments  will  be  a  topic  of  our
future research.
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