

Backdoor Attack to Giant Model in Fragment-Sharing
Federated Learning

Senmao Qi, Hao Ma, Yifei Zou*, Yuan Yuan*, ZhenZhen Xie, Peng Li, and Xiuzhen Cheng

Abstract: To efficiently train the billions of parameters in a giant model, sharing the parameter-fragments within

the Federated Learning (FL) framework has become a popular pattern, where each client only trains and

shares a fraction of parameters, extending the training of giant models to the broader resources-constrained

scenarios. Compared with the previous works where the models are fully exchanged, the fragment-sharing

pattern poses some new challenges for the backdoor attacks. In this paper, we investigate the backdoor attack

on giant models when they are trained in an FL system. With the help of fine-tuning technique, a backdoor

attack method is presented, by which the malicious clients can hide the backdoor in a designated fragment that

is going to be shared with the benign clients. Apart from the individual backdoor attack method mentioned

above, we additionally show a cooperative backdoor attack method, in which the fragment of a malicious client

to be shared only contains a part of the backdoor while the backdoor is injected when the benign client receives

all the fragments from the malicious clients. Obviously, the later one is more stealthy and harder to be detected.

Extensive experiments have been conducted on the datasets of CIFAR-10 and CIFAR-100 with the ResNet-34

as the testing model. The numerical results show that our backdoor attack methods can achieve an attack

success rate close to 100% in about 20 rounds of iterations.

Key words: Federated Learning (FL); giant model; backdoor attack; fragment-sharing

1　Introduction

Billions of parameters enable the giant models to
efficiently address complex tasks with high

performance. However, it also prevents the giant
models from being applied in some computation/
communication-constrained scenarios, e.g., the edge
networks[1, 2]. To overcome this problem, Federated
Learning (FL) with fragment-sharing has been
considered as an efficient paradigm for multiple clients
to train a giant model together. Specifically, when a
group of clients cooperatively train a giant model, each
of them only needs to train a fragment of parameters
and share such a fragment with other clients. By doing
this, each client significantly has its
computation/communication overhead alleviated
without losing too much performance on the whole
giant model, as has been proved in Refs. [3, 4]. Some
typical works include Refs. [5, 6]. Specifically, the
clients in Ref. [5] only train some tunable parts of a
giant model and share those parameters to realize the
federated fine-tuning on a large language model. In

 Senmao Qi, Hao Ma, Yifei Zou, ZhenZhen Xie, and Xiuzhen

Cheng are with School of Computer Science and Technology,
Shandong University, Qingdao 266237, China. E-mail:
senmaoqi@mail.sdu.edu.cn; haoma@mail.sdu.edu.cn;
yfzou@sdu.edu.cn; xiezz21@sdu.edu.cn; xzcheng@sdu.edu.cn.

 Yuan Yuan is with Shandong University-Nanyang
Technological University International Joint Research Institute
on Artificial Intelligence, Shandong University, Jinan 250101,
China. E-mail: yyuan@sdu.edu.cn.

 Peng Li is with School of Computer Science and Engineering,
The University of Aizu, Aizuwakamatsu 9658580, Japan.
E-mail: pengli@u-aizu.ac.jp.

* To whom correspondence should be addressed.
 Manuscript received: 2023-12-31; revised: 2024-04-16;

accepted: 2024-05-20

BIG DATA MINING AND ANALYTICS
ISSN 2096-0654 01 /01 pp1−14
DOI: 10.26599/BDMA.2024.9020035
V o l u m e x , N u m b e r x , x x x x x x x x

© The author(s) 2024. The articles published in this open access journal are distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

mailto:senmaoqi@mail.sdu.edu.cn
mailto:haoma@mail.sdu.edu.cn
mailto:yfzou@sdu.edu.cn
mailto:xiezz21@sdu.edu.cn
mailto:xzcheng@sdu.edu.cn
mailto:yyuan@sdu.edu.cn
mailto:pengli@u-aizu.ac.jp
mailto:pengli@u-aizu.ac.jp
https://doi.org/10.26599/BDMA.2024.9020035
http://creativecommons.org/licenses/by/4.0/

Ref. [6], a flexible FL paradigm for giant models is
proposed, which allows each client to share arbitrary
fragment of the giant model with theoretical analysis
provided. Overall, the FL with fragment sharing has
become a popular approach to train a giant model for
multiple clients in a distributed system.

Compared with the previous FL works in which the
machine learning models are fully exchanged, FL with
fragment sharing reduces the computation and
communication thresholds for the clients to train a
giant model cooperatively. Whereas, it also raises some
new problems on the backdoor attacks and defenses on
the model sharing. Specifically, in a general FL process
with full model exchanged, a malicious client can share
an elaborate model or gradient to other clients, so that a
backdoor is injected in the global model[7–9]. We say a
model is backdoor if it behaves normally on normal
inputs while exhibiting the behavior desired by the
malicious clients when facing the inputs with specified
triggers. For example, a backdoor model can classify a
cat wearing glasses as a dog with the glasses as the
trigger, while it still recognizes a cat without glasses as
a cat. Attackers can also use model aggregation to
continuously infect other benign participants by
poisoning their own local dataset[10–13]. However, all of
these attack methods inject backdoor into the entire
model[14, 15], which is not feasible if only fragments are
shared. How to hide the backdoor behind a fragment of
a model or gradient deserves further investigation.
Meanwhile, from the perspective of backdoor defense,
it also becomes harder for the benign clients to detect
the backdoor from a fragment, when the full model is
not delivered. The existing backdoor detection methods
in FL[16, 17] based on full-model may not work. For
example, Trimmed-mean[17] requires appropriate
trimming of each dimension of the model parameters to
obtain a robust global model. However, under FL with
fragement sharing, there may not be too much overlap
between individual fragments, thus rendering this
method unusable.

In this paper, we investigate the backdoor attacks on
giant model under the FL framework with fragment
sharing. Specifically, we consider a decentralized FL
system that contains a number of benign clients and
malicious clients whose goal is to inject backdoor into
the models of benign clients. During the training
process, the clients share the specified fragments of the
full model at the phase of model sharing. To launch the

FTBA∗ FTBA∗

FTBA∗

backdoor attack only with the fragment sharing, we
propose a model parameter Fine-Tuning-based
Backdoor Attack (FTBA) method. With the above
FTBA method, the malicious client can embed a
backdoor into its specified fragment by fine-tuning a
specified portion of the model parameters on its local
poisoned dataset, and continuously infects other benign
clients during the model sharing phase. Meanwhile, to
alleviate the problem of degraded attack effectiveness
caused by embedding a backdoor into a single specific
fragment, we also propose a cooperative FTBA
(namely) algorithm. The method
enables multiple malicious clients to cooperatively
embed a backdoor in multiple specified fragments. The
backdoor characteristics are manifested when and only
when these fragments are combined together on the
benign client, while individual fragments do not
possess significant backdoor characteristics. As a
result, greatly increases the flexibility and
stealthiness of backdoor attacks, and is harder to detect.
To summarize, our main contributions are as follows:

● To the best of our knowledge, this paper is one of
the first that studies the potential vulnerability of
backdoor attacks on giant models in federated learning
with fragment sharing. We hope that our work can shed
some light on the security of FL with fragment sharing
and help the design of a secure distributed training
paradigm for giant models.

FTBA∗

● We propose FTBA method, which enables a
malicious client to embed a backdoor in a specific
fragment of the whole model. This backdoor fragment
can successfully perform backdoor attacks on other
benign clients. Meanwhile, we also propose
method, which can help multiple attackers to carry out
cooperative attacks and transfer backdoor into multiple
model fragments, thus achieving better backdoor attack
results as well as significantly increasing the stealth
and detection difficulty of backdoor attacks.

● We conduct extensive experiments on the CIFAR-
10 and CIFAR-100 datasets[18] using the ResNet-34
model[19]. The numerical results show that our methods
can successfully embed the backdoor in specific model
fragments by fine-tuning the model parameters for
some common backdoor attacks, such as BadNet[10],
Blend[13], Trojan[20], and Adaptve_patch[12]. In most of
the experiments, our methods can achieve close to
100% attack success rate. We also demonstrate that
model parameter fine-tuning is an effective means of
effectively concentrating a backdoor in a specific

 2 Big Data Mining and Analytics, xxxx xxxx, x(x): 1−14

FTBA∗

model fragment by designing a series of comparison
and ablation experiments and illustrating neural
network visualization results. These experiments
effectively demonstrate the correctness and superiority
of our FTBA and algorithms.

RoadMap. We organize the remainder of this paper
as follows: Section 2 introduces the related work and
Section 3 gives some FL system descriptions and the
problem statement. The backdoor attack algorithm is
shown in Section 4. Finally, we conduct detailed
experiments and discuss the impact of different
parameter settings on the experimental results in
Section 5. Lastly, we conclude this work in Section 6.

2　Related Work

2.1　Backdoor attacks in FL

Since Bagdasaryan et al.[7] first revealed the backdoor
vulnerability in FL, a series of backdoor attacks in FL
have been proposed in the past decade. Overall,
backdoor attacks in FL can be divided into two
categories, one is called data poisoning, and the other is
called model poisoning[21].

In data poisoning backdoor attack, the attacker will
poison the clean dataset by adding a specific trigger to
partial samples and modifying their true label, so that
the normally training model stealthily contains a
backdoor[10, 22, 23]. There are various trigger options for
data poisoning, such as a visible pixel block[7, 10, 13, 20]

and the invisible Gaussian noise[24]. The broad trigger
also encompasses image transformations and in/out
distribution samples. For example, Nguyen and Tran[11]

used geometric transformations to deform images to
poison the clean samples. Besides, some data poisoning
methods generate edge distribution or out-of-
distribution data as triggers to mislead the model into
misclassification[25–27].

In model poisoning backdoor attacks, attackers
stealthily inject a backdoor to the local/global model in
a certain step of FL. For example, Bagdasaryan et al.[7]

scaled the model during the model aggregation phase
to replace the global model with a backdoored model.
This model replacement method is widely adopted in
some subsequent work[8, 9]. In order to increase the
concealment of the replacement attacks, Bhagoji
et al.[28] limited excessively giant model updates by
modifying the loss function in the local training
process to evade defense measures based on anomaly
detection.

2.2　Fragment-sharing FL

Due to the excessive amount of neural network
parameters[29], user privacy considerations[30], or
heterogeneity considerations[31], clients in FL may
cannot share all model parameters with other
participants, where each client can only share a
fragment of whole model. The key issue in fragment-
sharing FL is to find a good fragment to represent the
whole model or gradient. Therefore, some work make a
trade-off between training efficiency and
communication burden or privacy budget by
considering these constraints in the local optimization
objective to obtain a sparse fragment estimate of local
model or gradient[32–34]. Besides, some research has
pointed out that sharing partial parameters of the model
(such as convolutional layers, batch normalization
layers, etc.) can help clients train better personalized
models[35, 36]. However, most of the above methods are
difficult to adapt to dynamic resource FL scenarios.
Therefore, Wang et al.[6] used a mask to get a sparse
model for communication and proposed a resource-
adaptive learning algorithm under arbitrary neuron
assignments with theoretical convergence guaranteed.
In this paper, our work is carried out on Ref. [6].

2.3　Parameter effective fine tuning

Parameter effective fine tuning is considered an
effective, lightweight means of migrating a pre-trained
giant model to downstream tasks. Common parameter-
effective fine-tuning methods include model parameter
fine-tuning[37], adapter fine-tuning[38], and Low-Rank
(LoRa) adapters[39]. Model parameter fine-tuning refers
to freezing the parameters in the model and only
updating part of the parameters during downstream
task training. It has been proven that fine-tuning a very
small amount of data can achieve transfer learning
from the original task to the downstream task[40].
Adapter fine-tuning refers to adding some trainable
parameters (called adapters) between certain layers of
the neural network and only updating the adapter
during downstream task training. This method is
considered a more flexible fine-tuning method that
does not disrupt the original network structure and has
been adopted by a large number of subsequent
studies[41, 42]. To further reduce the training parameters
of the adapter, Hu et al.[39] proposed an LoRa adapter
and used residual connections to fine-tune the network
parameters. Compared with adapter fine-tuning, LoRa

 Senmao Qi et al.: Backdoor Attack to Giant Model in Fragment-Sharing Federated Learning 3

can achieve the same model fine-tuning performance
with fewer training parameters. This method has been
widely used in the fine-tuning of large language
models[43].

3　FL System and Problem Definition

3.1　Decentralized federated learning

N V k
Dk θk

k Bk

|θk |

We consider a decentralized FL system that consists of
 clients, denoted by the set . Each client has its

own local dataset , local model , and exchanges
data over the network. However, due to user or system
constraints, each client can only send up to bits of
data during each communication process, which may
be much less than , especially in distributed training
of large language models[44]. By training their own
models locally and sharing the updates with others, all
clients will achieve the following goal of our
decentralized FL step by step:

min
{θ1, θ2, ..., θN }∈Rd

N∑
k=1

|Dk |
|D| fk (θk; Dk) (1)

fk
k Dk

D = {D1∪D2∪ · · ·∪DN} θk
d k

where represents the local loss function of each
client based on local dataset , such as cross-
entropy or mean square error loss.

 is the entire dataset and is a
-dimensional local model of client .

θ0k

i = 1, 2, . . . k

To optimize the objective of Formula (1) efficiently
under model fragment sharing, the clients take the
following synchronized training proposed in Ref. [6].
Initially, each client has its own local model . In each
discrete training round , the client first
trains the local model on the local dataset, then sends a
fragment of the model that meets the network
bandwidth limit to other clients, and finally updates the
local model after receiving other model fragments. The
details of the synchronized training are given in the
following:

k
θik fk (θik; Dk)

Dk θ̂ik = θ
i
k −η

i
k∇θik fk (θik; Dk) θik

θ̂ik

k
i ηi

k

∇θik fk (θik; Dk)
fk (θik; Dk)

● Local training: Each client trains its own local
model to optimize the loss on its dataset

, i.e., , where and are
the local models of client before and after the local
training in round , is the learning rate in each
iteration, and is the corresponding
gradient of .

k
θ̄ik mk θ̄ik = θ̂

i
k ⊙mk

mk θik

● Fragment sharing: Each client gets a sparse
model through mask , i.e, , where
mask is a binary matrix of the same size as with

∥mk∥0 ⩽ Bk ⊙, and “ ” denotes the Hadamard product.
k

θi+1
k = Aggre (∪N

a=1{θ̄
i
a}) Aggre ()

Aggre ()

● Fragment aggregation: Each client aggregates
the received sparse models and its local model to
generate a new one that will be used in the next round
local training. In a mathematical formulation, we have

. The is an abstract
aggregation function here. Specifically, in Ref. [6],
each client performs parameter averaging for each
dimension of the model. For convenience, in the
remainder of this paper, we use to refer to the
model aggregation method used in Ref. [6]. The
detailed description is given in Section 4.

By repeating the training rounds for sufficient times,
all clients obtain the high-accuracy model on its own
dataset.

3.2　Problem definition for general backdoor
attack in Decentralized Federated Learning
(DFL)

Sm Sb

k ∈ Sm θ̃k

θ̃k k ∈ Sm

mk

x
φ (x)

y τ (y)

In general, when considering federated learning
scenarios with backdoor attacks, clients always are
divided into two categories: the set of malicious nodes

 and the set of benign clients . For each attacker
, it sends a tampered model to the benign

clients. Besides, considering the constrained network
bandwidth, sent by attacker must also be a
sparse model, and the non-zero position should be
consistent with that in the binary matrix . After the
benign clients take an aggregation according to the
legitimate models from other benign clients and the
tampered models from the attackers, the aggregated
model may contain a backdoor, i.e. the aggregated
model behaves normally without trigger but acts in a
malicious manner when facing triggers. Formally, let
and represent the clean and manipulated data
sample, respectively; and represent the
corresponding true label and target label that the
malicious node hopes to induce, respectively. The
optimization goal of a general backdoor attack in
decentralized FL is

min
∪

k ∈ Sm{θ̃h}

∑
h ∈ Sb,
{x, y} ∈ Dh

fh (θh; {x, y})+ fh (θh; {φ (x), τ (y)}),

s.t., θi+1
h = Aggre ({ ∪

h ∈ Sb
{θ̄ih}}∪ { ∪k ∈ Sm

{θ̃ik}},

∥θ̄ik∥0 ⩽ Bk, θ̄
i
k = θ̄

i
k ⊙mk, ∀ k ∈ Sm,

∥θ̃ih∥0 ⩽ Bi, θ̃
i
h = θ̃

i
h⊙mh, ∀ h ∈ Sm,

∪
i ∈ V

mi =J (2)

 4 Big Data Mining and Analytics, xxxx xxxx, x(x): 1−14

J

The optimization objective of the attackers includes
two parts. The first loss function encourages the victim
to achieve high prediction accuracy on the clean inputs.
The second loss function encourages a high attack
success rate when facing inputs with triggers, that is, it
outputs as the attackers desire. In addition, the four
constraints in Formula (2) include the constraints on
model aggregation in DFL and the constraints on
communication. Specifically, the first constraint limits
the aggregation method used by clients in DFL when
they have received other models. The second and third
constraints reflect the bandwidth constraints of the
communication network and the sparsification
constraints, respectively. Specifically, the transmitted
model needs to satisfy that the number of non-zero
elements does not exceed the network bandwidth limit,
and it needs to ensure that the elements in the mask
corresponding to the position of 1 need to be retained.
The last constraint requires that the union of the masks
of all clients is a matrix of ones , which means that
the parameters of each dimension of the global model
need to be trained by the client to ensure the
convergence of the global model. In this paper, we
assume that the communication bandwidth of each
client is fixed and its mask does not change.

In conclusion, the main challenge of backdoor
attacks under fragment shared DFL is that whether a
benign client or a malicious client, it can only send the
specified sparse model when sharing models, i.e., the
last two constraints in goal of Formula (2), which is
also the main difference between backdoor attacks in
traditional FL.

Our approach. As mentioned above, the general
backdoor attack in DFL needs to ensure that the model
trained by the benign client accurately predicts on
clean inputs, and outputs the desired results when
facing inputs with triggers. To achieve this, we first
generate a poisoned dataset using backdoor attack
methods based on data poisoning[21], and train the
model on this poisoned dataset. In addition, due to
communication bandwidth limitations, attackers can
only share model parameters specified by the masks.
Therefore, during training, we use model fine-tuning to
only fine-tune the shared model parameters. More
details of the algorithm implementation are given in
Section 4. Finally, we summarize all important
symbols used in the paper in Table 1.

4　Methodology

In this section, we will illustrate model FTBA in
fragment shared DFL in detail. We provide the specific
implementation process of FTBA in Algorithm 1.

In the TFBA algorithm, the malicious client first
needs to generate a poisoned dataset using existing

Table 1 Important symbols.
Parameter Definition

N Number of clients
V Set of clients
Dk kDataset of client
θk kModel parameters of client
Bk kBandwidth limit of client
fk kLocal loss function of client
ηk kLearning rate of client
θ̄k kSparse model of benign client
θ̃k kSparse model of malicious client
mk kMask matrix of client
B Mini-batch of dataset
Sb Set of benign clients
Sm Set of malicious clients
E Epoch number
d Dimension of model parameters

x and φ (x) Clean and manipulated samples
y and τ (y) True label and target label
∇ f (·) f (·)Gradient of function
⊙ Hadamard product
∥ ∥0 Zero norm

Aggre () Aggregation function

FTBA for malicious clinet v
and

h h

each mini-batch B

u u u

each dimension
u

u
u

u

...

...

...

 Senmao Qi et al.: Backdoor Attack to Giant Model in Fragment-Sharing Federated Learning 5

0

k Dk

θk = θk −ηk∇θik fk (θk; Dk)⊙mk

E

Dk

θ̃ik = θ
i
k ⊙mk

e

e
e

I ()
e I ()

1
e

backdoor attack methods based on data poisoning.
Some common data poisoning methods include
BadNet[10], Blend[13], Trojan[20], Adaptive_patch[20],
etc. These methods select a portion of samples from the
clean dataset, add triggers to them, and replace their
true labels with the labels that the attacker wishes to
induce. It has been proven that models trained normally
on this poisoned dataset will have backdoor
vulnerabilities[45]. Considering the fragment shared
scenario, all participants, including malicious clients,
can only send part of the model specified by the mask.
Therefore, we use model fine-tuning techniques to
embed the backdoor in the designated parameters of
the model. Specifically, we freeze all parameters in the
local model that are in the same position as the
elements in the mask, which represents parameters that
will not be shared. During the training process, these
frozen parameters participate in the calculation of
forward inference, but they do not conduct the
parameter update during backward propagation.
Formally, the model parameter fine-tuning of malicious
node on dataset can be represented as

. The malicious node will
perform epochs of local model fine-tuning, and for
each epoch, it performs mini-batch stochastic gradient
descent on all mini-batches of dataset . In the model
sharing stage, the malicious client sends out the fine-
tuned parameters, i.e., . At the same time,
the malicious client will receive sparse models sent by
other participants. Finally, the malicious client uses the
received sparse model for model aggregation.
Specifically, for each dimension of the local model
parameters, the malicious client will average the
parameters of the -th dimension with the parameters
of the -th dimension included in the received sparse
model. Therefore, in the algorithm, we first need to use
the function to count the number of participants
who share -th dimension parameter, where is a
function that judges whether the input is . Then, it
averages the parameters for -th dimension.

5　Experiment

In this section, we conduct extensive experiments to
verify the effectiveness of the FTBA algorithm. We
choose four common data poisoning methods and
launch backdoor attacks on other benign clients
through model fine-tuning. The experimental results
prove that our FTBA algorithm can provide a bridge
for most data poisoning-based backdoor attacks in

federated learning to be applied in fragment shared
scenarios.

5.1　Experiment settings for FTBA

Our whole experiment is developed by a Python
program with the support of Pytorch[46] for computer
vision classification task, which is one of the most
commonly used libraries in deep learning. All
experiments are conducted on a Linux machine with
two NVIDIA GeForce RTX 4090s and 128 GB main
memory, implemented in Python 3.9 and using CUDA
for parallel computing[47].

Dataset. We consider two common visual
classification datasets, CIFAR-10 and CIFAR-100[18],
which are both labeled subsets of the 80 million tiny
images dataset. The CIFAR-10 dataset includes 60 000
color images of size 32 pixel × 32 pixel. It includes 10
classes, each with about 6000 images. The image size
and number of images in the CIFAR-100 dataset are
consistent with CIFAR-10. The difference is that
CIFAR-100 includes 100 classes, each with about 600
images. Therefore, compared to the CIFAR-10 dataset,
the CIFAR-100 dataset poses higher demands on the
learning ability of neural networks.

Model. We use the classic residual neural network
ResNet-34 for model training[19]. ResNet-34 is a
convolutional neural network model that consists of 34
layers. It has a total of approximately 21.8 million
parameters[48]. In the specific implementation, we use
ResNet-34 that has been defined by
torchvision.models.resnet34 for training, and its
network architecture is shown in Fig. 1.

Conv1

Conv1

Conv2

Block 1
Layer 1

Block 0

Block 2

Down-sampling 0

Down-sampling 1

Layer 2

Layer 3

Layer 4

Full connection (FC)
Fig. 1 Schematic diagram of the architecture of ResNet-34.

 6 Big Data Mining and Analytics, xxxx xxxx, x(x): 1−14

1+ (2 × 3+2) × 4+1 = 34

As can be seen from the Fig. 1, a standard ResNet-34
consists of a convolutional layer, four basic layers, and
a linear layer. Each basic layer includes three residual
blocks and two down-sampling layers. Each residual
block contains two convolutional layers and is
connected by residual connections. The entire network
has a total of layers of
learnable parameters.

δ = 1

FL settings. We consider a decentralized federated
learning scenario with 10 clients, including 2 malicious
clients. Each client obtains a Non-IID subset of the
dataset through a Dirichlet function with [49]. The
Dirichlet function represents a multivariate probability
distribution characterized by a vector of positive real
values. It serves as a tool to partition the original
dataset into distinct subsets, each exhibiting varying
degrees of heterogeneity. Sampling from the Dirichlet
function yields a collection of proportions, facilitating
the segmentation of the CIFAR-10 or CIFAR-100
dataset. Consequently, each subset encompasses a
diverse mix of images from different classes, thereby
establishing a heterogeneous distribution. All clients
undergo 10 rounds of global training, with each round
of global training involving 5 epochs of local iterations,
and the batch size is 64. Each client optimizes the local
objective using the Adam optimizer with an initial
learning rate of 0.001. Due to communication
constraints, each client can only share part of the
ResNet-34 parameters. The shared parameters of all
clients are shown in Table 2.

Data poisoning methods. Since the FTBA algorithm
needs to first obtain a poisoned dataset. We implement
data poisoning using BadNet[10], Blend[13], Trojan[20],
and Adaptive_patch[12], and the poisoning rate is 20%.
For label modification, we adopt an “all-to-one”
approach, that is, modify all correct labels to the same
label. In order to compare their differences more
intuitively, we visualize these four poisoning methods
in Fig. 2. The triggers of the four data poisoning
methods are different. Specifically, BadNet and Trojan
add a black and white or color mosaic pixel block to
the original airplane image. In Blend, the trigger is a
Hello Kitty picture that is the same size as the original
picture. The trigger of Adaptive_patch is calculated
through an adaptive method, making it more difficult to
detect with the naked eye. The above-mentioned attack
methods are implemented in the backdoor benchmark
platform developed by Li et al.[50]

Evaluation metrics. In the research about backdoor
attacks, the following two metrics are considered: the
Attack Success Rate (ASR) and Clean data Accuracy
(CA)[21]. The former refers to the probability that an
input with a trigger is successfully predicted as the
target class specified by the attacker. The latter refers
to the probability that clean input samples without
triggers are correctly predicted as their true classes. For
a successful backdoor attack strategy, the backdoor
model should have a high ASR and CA.

5.2　Overall performance of FTBA

In this section, we verify the performance of our FTBA
algorithm through multiple sets of experiments. We
also discuss the impact of the proportion of parameters
being attacked on the attack effect.

Numerical results. We first demonstrate the changes
in the ASR and CA of all benign local models under
the CIFAR-10 and CIFAR-100 datasets with the FTBA
algorithm as the number of training rounds increases.
The experimental results are shown in Fig. 3.

Table 2 Model partitioning in DFL. The bolded part
represents the information of malicious clients. During the
training process, benign clients update all parameters, while
malicious clients fine-tune the specified parameters.

Parameters partitioning Training parameter Client ID
Conv1, Layer 1, Layer 2 All layers 5, 6, 8

Layer 2, FC All layers 2, 3
Layer 1 All layers 4, 7, 9

Layer 3, Layer 4, FC Layer 3, Layer 4, FC 0, 1

(a) Original image (b) BadNet (c) Blend (d) Trojan (e) Adaptive_patch
Fig. 2 Visualized results of different data poisoning methods for an airplane sample in CIFAR-10.

 Senmao Qi et al.: Backdoor Attack to Giant Model in Fragment-Sharing Federated Learning 7

From Fig. 3, it can be seen that whether in CIFAR-10
or CIFAR-100 dataset, our FTBA algorithm can
quickly achieve a high ASR for all four attack
methods. Specifically, for the BadNet, Trojan, and
Adaptive_patch attack methods, they can quickly
converge and achieve close to 100% ASR within the
first 20 training epoch. For the Blend attack method,
although its convergence speed is slower, it also
achieves an ASR of over 60% in the 20th round and
can reach an ASR of over 90% in the final 100 rounds.
At the same time, we notice that the FTBA algorithm
can still maintain a high clean test rate while achieving
a high ASR. On the CIFAR-10 and CIFAR-100
datasets, all four methods achieve a test accuracy of
over 90% and close to 80%, which is close to the test
accuracy of the model trained normally.

Feature visualization results. To more intuitively
demonstrate the attack effect of the FTBA algorithm,
we compare the feature distributions of the local
models of benign clients and malicious clients.
Specifically, we conduct experiments on the CIFAR-10
dataset using four different attack methods. We
randomly select a benign and a malicious client and
visualize the feature distribution of their local models
for benign inputs and inputs with triggers after 100
rounds of training. For the ResNet-34 model, we use
the output of Layer 4 in Fig. 2 as the features extracted
from the corresponding input images, and use t-
distributed stochastic neighbor embedding[51] to reduce
the features to a two-dimensional plane for
visualization. The visualization results are shown in
Fig. 4.

It can be seen that the Trojan and Adaptive_patch
attack methods show a more significant difference in
feature level for clean inputs and inputs with triggers.
At the same time, we can find that the FTBA algorithm
can migrate this characteristic to the local model of the

benign client. However, for the BadNet and Blend
attack methods, clean inputs and inputs with triggers do
not show a strong difference at the feature level, and
this characteristic is also reflected in the local model of
the benign client.

Therefore, from the perspective of feature
visualization, our FTBA algorithm can effectively
migrate the features of the backdoor model to the local
models of other benign clients, which also proves the
effectiveness of the FTBA backdoor attack.

Effectiveness of fine-tuning. In this section of the
experiment, we validate the effectiveness of model
parameter fine-tuning. Specifically, we compare the
ASR and CA of the local model trained by the
malicious client under the conditions of model
parameter fine-tuning and full parameter training as the
number of training epochs change. The experimental
results are shown in Fig. 5, From which, it can be
clearly seen that fine-tuning part of the parameters of
ResNet-34 (Layer 3, Layer 4, and FC) and full
retraining do not show significant differences in
convergence speed and final accuracy. This fully
demonstrates the effectiveness of model fine-tuning.

BadNet+

BadNet−

BadNet−−

Impact of the proportion of parameters being
attacked. In the FTBA algorithm, a key indicator is the
proportion of parameters that the attacker can send,
which directly reflects the proportion of parameters
being attacked. Therefore, in this experiment, we
explore the impact of this indicator on the ASR and CA
of the attacked model by changing the proportion of
attacked parameters. Specifically, we consider four
different attack proportions, namely attacking
all parameters of ResNet-34, BadNet attacking Layer 3,
Layer 4, and FC layer, attacking Layer 4, FC
layer, and only attacking FC layer. The
experimental results are shown in Fig. 6.

From the experimental results, it can be seen that the

100

80

60

40

20

0

AS
R

 (%
)

0 20 40
Number of epochs

60 80 100

100

80

60

40

20

0
C

A
(%

)
0 20 40

Number of epochs
60 80 100

100

80

60

40

20

0

AS
R

 (%
)

0 20 40
Number of epochs

60 80 100

100

80

60

40

20

0

C
A

(%
)

0 20 40
Number of epochs

(a) ASR for CIFAR-10 (b) CA for CIFAR-10 (c) ASR for CIFAR-100 (d) CA for CIFAR-100

60 80 100

BadNet Blend Trojan Adaptive_patch
Fig. 3 ASR and CA of benign clients under CIFAR-10 and CIFAR-100.

 8 Big Data Mining and Analytics, xxxx xxxx, x(x): 1−14

Blend−

proportion of attacked parameters has a significant
impact on ASR, but does not affect the CA results.
Specifically, by increasing the proportion of attacked
parameters, the efficiency of the attack can be
improved. For example, Blend will achieve a faster and
better attack success rate than . However, this
improvement will gradually saturate. For example, for

the four poisoning methods, the full parameter attack
does not produce any improvement compared to the
attack on Layer 3, Layer 4, and FC layer. At the same
time, we notice that when only attacking the FC layer,
all four attack methods will fail.

5.3　Discussion about cooperative FTBA

In the above experiments, we assume that the layers

50

30

10

−10

−30

−50

D
im

en
si

on
 2

−80 −50 −20
Dimension 1

10 40 70

50

30

10

−10

−30

−50
D

im
en

si
on

 2
−80 −50 −20

Dimension 1
10 40 70

50

30

10

−10

−30

−50

D
im

en
si

on
 2

−80 −50 −20
Dimension 1

(a) Benign client

(b) Malicious client

10 40 70

50

30

10

−10

−30

−50

D
im

en
si

on
 2

−80 −50 −20
Dimension 1

10 40 70

50

30

10

−10

−30

−50

D
im

en
si

on
 2

−80 −50 −20
Dimension 1

10 40 70

50

30

10

−10

−30

−50

D
im

en
si

on
 2

−80 −50 −20
Dimension 1

10 40 70

50

30

10

−10

−30

−50
D

im
en

si
on

 2

−80 −50 −20
Dimension 1

10 40 70

50

30

10

−10

−30

−50

D
im

en
si

on
 2

−80 −50 −20
Dimension 1

10 40 70

Poisoned automobile Clean automobile

BadNet Blend Trojan Adaptive_patch

BadNet Blend Trojan Adaptive_patch

Fig. 4 Feature visualization results under different backdoor attacks for clients.

100

80

60

40

20

0

AS
R

 (%
)

0 20 40
Number of epochs

60 80 100

100

80

60

40

20

0

AS
R

 (%
)

0 20 40
Number of epochs

60 80 100

100

80

60

40

20

0

AS
R

 (%
)

0 20 40
Number of epochs

60 80 100

100

80

60

40

20

0

AS
R

 (%
)

0 20 40
Number of epochs

60 80 100

100

80

60

40

20

0

C
A

(%
)

0 20 40
Number of epochs

60 80 100

100

80

60

40

20

0

C
A

(%
)

0 20 40
Number of epochs

Fine-tuning Full-training

60 80 100

100

80

60

40

20

0

C
A

(%
)

0 20 40
Number of epochs

60 80 100

100

80

60

40

20

0

C
A

(%
)

0 20 40
Number of epochs

60 80 100

(a) ASR for BadNet (b) ASR for Blend (c) ASR for Trojan (d) ASR for Adaptive_patch

(e) CA for BadNet (f) CA for Blend (g) CA for Trojan (h) CA for Adaptive_patch

Fig. 5 Model fine-tuning vs. model full-training for malicious clients under fragment shared DFL.

 Senmao Qi et al.: Backdoor Attack to Giant Model in Fragment-Sharing Federated Learning 9

FTBA∗

attacked by the two attackers are the same, as this can
demonstrate the best attack effect. However, in
practical problems, it may be difficult for FL systems
to ensure that multiple attackers can attack the same
layer. Therefore, in this section, we discusse how to
better improve the attack effect by hiding the backdoor
in multiple model fragments. For this purpose, we
propose a cooperative attack algorithm , which
can effectively alleviate the problem of reduced
backdoor attack effectiveness when attackers attack
different targets. The pseudocode is shown in
Algorithm 2.

FTBA∗

mt

FTBA∗ k

mk

mt

Compared to the FTBA algorithm, the
algorithm needs to know the mask of all attackers. It
also introduces a fine-tune mask to guide the fine-
tuning of local model, which represents the attack
parameter positions of all attackers (as shown in Line
2). Specifically, in , the malicious client fine-
tunes all the attack targets of all attackers during local
fine-tuning, but only sends specific parameters
specified by the mask when sending. The fine-tune
mask reflects a consensus reached by all attackers,
enabling cooperative attacks under fragment shared
conditions among attackers. In a sense, FTBA* allows
attackers to conduct fragment-shared FL, which
implements distributed backdoor poisoning attacks, so
it is more effective.

FTBA∗To demonstrate the effectiveness of , we
conduct experiments by using the CIFAR-10 dataset

FTBA∗

and ResNet-34. We let Attacker 1 attack Layer 3 of
ResNet-34, and Attacker 2 attack Layer 4 and the FC
layer of ResNet-34. We compare the changes in ASR
of four attack methods under and FTBA with
the number of training epochs in Fig. 7. At the same
time, we perform ablation on Attackers 1 and 2 to
reflect the effect of cooperation.

From the experimental results, it can be easily seen
that the cooperative attack strategy FTBA* can
effectively alleviate the problem of decreased attack

100

80

60

40

20

0

AS
R

 (%
)

0 20 40
Number of epochs

60 80 100

100

80

60

40

20

0
AS

R
 (%

)
0 20 40

Number of epochs
60 80 100

100

80

60

40

20

0

AS
R

 (%
)

0 20 40
Number of epochs

60 80 100

100

80

60

40

20

0

AS
R

 (%
)

0 20 40
Number of epochs

60 80 100

100

80

60

40

20

0

C
A

(%
)

0 20 40
Number of epochs

60 80 100

100

80

60

40

20

0

C
A

(%
)

0 20 40
Number of epochs

60 80 100

100

80

60

40

20

0
C

A
(%

)
0 20 40

Number of epochs
60 80 100

100

80

60

40

20

0

C
A

(%
)

0 20 40
Number of epochs

60 80 100

(a) ASR for BadNet (b) ASR for Blend (c) ASR for Trojan (d) ASR for Adaptive_patch

(e) CA for BadNet (f) CA for Blend (g) CA for Trojan (h) CA for Adaptive_patch

BadNet
BadNet+

BadNet−
BadNet−−

Blend
Blend+

Blend−

Blend−−

Trojan
Trojan+

Trojan−

Trojan−−

Adaptive patch
Adaptive patch+

Adaptive patch−

Adaptive patcha−−

BadNet
BadNet+

BadNet−
BadNet−−

Blend
Blend+

Blend−

Blend−−

Trojan
Trojan+

Trojan−

Trojan−−

Adaptive patch
Adaptive patch+

Adaptive patch−

Adaptive patcha−−

Fig. 6 ASR and CA for benign clients under different proportion of parameters being attacked.

FTBA* for malicious clinet k

h h

each mini-batch B

u u u

each dimension
u

u
u

u

...

...

...

 10 Big Data Mining and Analytics, xxxx xxxx, x(x): 1−14

FTBA∗

FTBA∗

FTBA∗

FTBA∗

effectiveness when the attack targets are inconsistent.
Specifically, when the attack targets are inconsistent,
except for the Blend attack, the other three attack
methods have reached a nearly 100% ASR in the first
20 rounds. However, FTBA requires 100 or even more
rounds of iterations to achieve a similar ASR. For the
Blend attack, has a significant improvement
over FTBA in both attack speed and ASR. At the same
time, by comparing the ablation experiments, we find
that in the , the model fragments sent by a single
attacker have a weaker attack effect on the benign
client, and in most attack methods, they can only
produce an average ASR of less than 20%. This also
poses a greater challenge to the defense work of

 if the attackers achieve a specific attack
combination consensus. Therefore, we believe that
when the attack targets are inconsistent, the
method can achieve better attack results.

6　Conclusion

In this paper, we show that the backdoor attacks still
exist when the giant model is trained in federated
learning with fragment sharing. To this end, we
propose a model fine-tuning-based backdoor attack that
effectively embeds a backdoor in a designated model
fragment and infects other benign clients during the
training process. Meanwhile, we also propose a
cooperative backdoor attack strategy, which can hide
the backdoor in multiple model fragments, greatly
enhancing the effectiveness and detection difficulty of
the backdoor attack. We hope that our work can raise
concerns about the security of federated learning for
giant models and inspire the design of secure
distributed training frameworks for giant models. It is
worth mentioning that extending the FTBA method to
dynamic network environments will be a topic of our
future research.

Acknowledgement

This work was supported by the National Natural Science
Foundation of China (Nos. 62102232, 62122042, and
62302247), the Shandong Science Fund for Excellent
Young Scholars (No. 2023HWYQ-007), and the
Postdoctoral Fellowship Program of CPSF (No.
GZC20231460).

References

 Z. Wang, K. Liu, J. Hu, J. Ren, H. Guo, and W. Yuan,
AttrLeaks on the edge: Exploiting information leakage
from privacy-preserving co-inference, Chin. J. Electron.,
vol. 32, no. 1, pp. 1–12, 2023.

[1]

 X. Pang, Z. Wang, D. Liu, J. C. S. Lui, Q. Wang, and J.
Ren, Towards personalized privacy-preserving truth
discovery over crowdsourced data streams, IEEE/ACM
Trans. Netw., vol. 30, no. 1, pp. 327–340, 2022.

[2]

 A. Hilmkil, S. Callh, M. Barbieri, L. R. Sütfeld, E. L. Zec,
and O. Mogren, Scaling federated learning for fine-tuning
of large language models, in Proc. 26th Int. Conf.
Applications of Natural Language to Information Systems,
Saarbrücken, Germany, 2021, pp. 15–23.

[3]

 J. H. Ro, T. Breiner, L. McConnaughey, M. Chen, A. T.
Suresh, S. Kumar, and R. Mathews, Scaling language
model size in cross-device federated learning, in Proc. 1st

Workshop on Federated Learning for Natural Language
Processing (FL4NLP 2022), Dublin, Ireland, 2022, pp.
6–20.

[4]

 C. Chen, X. Feng, J. Zhou, J. Yin, and X. Zheng,
Federated large language model: A position paper, arXiv
preprint arXiv: 2307.08925, 2023.

[5]

 Y. Wang, X. Zhang, M. Li, T. Lan, H. Chen, H. Xiong, X.
Cheng, and D. Yu, Theoretical convergence guaranteed
resource-adaptive federated learning with mixed
heterogeneity, in Proc. 29th ACM SIGKDD Conf.
Knowledge Discovery and Data Mining, Long Beach, CA,
USA, 2023, pp. 2444–2455.

[6]

 E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V.
Shmatikov, How to backdoor federated learning, in Proc.
23rd Int. Conf. Artificial Intelligence and Statistics,
Palermo, Italy, 2020, pp. 2938–2948.

[7]

 H. Wang, K. Sreenivasan, S. Rajput, H. Vishwakarma, S.
Agarwal, J. Y. Sohn, K. Lee, and D. Papailiopoulos,

[8]

100

80

60

40

20

0

AS
R

 (%
)

0 20 40
Number of epochs

60 80 100

100

80

60

40

20

0
AS

R
 (%

)
0 20 40

Number of epochs
60 80 100

100

80

60

40

20

0

AS
R

 (%
)

0 20 40
Number of epochs

60 80 100

100

80

60

40

20

0

AS
R

 (%
)

0 20 40
Number of epochs

60 80 100

(a) BadNet (b) Blend
FTBA* FTBA Ablation Attacker 1 Ablation Attacker 2

(c) Trojan (d) Adaptive_patch

Fig. 7 ASR for benign clients comparison between FTBA* and FTBA.

 Senmao Qi et al.: Backdoor Attack to Giant Model in Fragment-Sharing Federated Learning 11

https://doi.org/10.23919/cje.2022.00.031
https://doi.org/10.1109/TNET.2021.3110052
https://doi.org/10.1109/TNET.2021.3110052

Attack of the tails: Yes, you really can backdoor federated
learning, in Proc. 34th Int. Conf. Neural Information
Processing Systems, Vancouver, Canada, 2020, p. 1348.
 Z. Sun, P. Kairouz, A. T. Suresh, and H. B. McMahan,
Can you really backdoor federated learning? arXiv
preprint arXiv: 1911.07963, 2019.

[9]

 T. Gu, K. Liu, B. Dolan-Gavitt, and S. Garg, BadNets:
Evaluating backdooring attacks on deep neural networks,
IEEE Access, vol. 7, pp. 47230–47244, 2019.

[10]

 A. Nguyen and A. Tran, Wanet- imperceptible warping-
based backdoor attack, arXiv preprint arXiv: 2102.10369,
2021.

[11]

 Y. Yu, Y. Wang, W. Yang, S. Lu, Y.-P. Tan, and A. C.
Kot, Backdoor attacks against deep image compression via
adaptive frequency trigger, in Proc. IEEE/CVF Conf.
Computer Vision and Pattern Recognition (CVPR 2023),
vol. 2023, pp. 12250–12259.

[12]

 X. Chen, C. Liu, B. Li, K. Lu, and D. Song, Targeted
backdoor attacks on deep learning systems using data
poisoning, arXiv preprint arXiv: 1712.05526, 2017.

[13]

 X. Zhou, M. Xu, Y. Wu, and N. Zheng, Deep model
poisoning attack on federated learning, Future Internet,
vol. 13, no. 3, p. 73, 2021.

[14]

 Z. Zhang, A. Panda, L. Song, Y. Yang, M. Mahoney, P.
Mittal, R. Kannan, and J. Gonzalez, Neurotoxin: Durable
backdoors in federated learning, in Proc. 39th Int. Conf.
Machine Learning, Baltimore, MD, USA, 2022, pp.
26429–26446.

[15]

 P. Blanchard, E. M. El Mhamdi, R. Guerraoui, and J.
Stainer, Machine learning with adversaries: Byzantine
tolerant gradient descent, in Proc. 31st Int. Conf. Neural
Information Processing Systems, Long Beach, CA, USA,
2017, pp. 118–128.

[16]

 D. Yin, Y. Chen, R. Kannan, and P. L. Bartlett, Byzantine-
robust distributed learning: Towards optimal statistical
rates, in Proc. 35th Int. Conf. Machine Learning,
Stockholmsmässan, Sweden, 2018, pp. 5650–5659.

[17]

 A. Krizhevsky, Learning multiple layers of features from
tiny images, Master dissertation, University of Toronto,
Japan, 2009.

[18]

 K. He, X. Zhang, S. Ren, and J. Sun, Deep residual
learning for image recognition, in Proc. 2016 IEEE Conf.
Computer Vision and Pattern Recognition, Las Vegas,
NV, USA, 2016, pp. 770–778.

[19]

 Y. Liu, S. Ma, Y. Aafer, W. C. Lee, J. Zhai, W. Wang, and
X. Zhang, Trojaning attack on neural networks, presented
at 25th Annual Network and Distributed System Security
Symp., San Diego, CA, USA, 2018.

[20]

 T. D. Nguyen, T. Nguyen, P. Le Nguyen, H. H. Pham, K.
D. Doan, and K. S. Wong, Backdoor attacks and defenses
in federated learning: Survey, challenges and future
research directions, Eng. Appl. Artif. Intellig., vol. 127, p.
107166, 2024.

[21]

 Y. Liu, T. Zou, Y. Kang, W. Liu, Y. He, Z. Yi, and Q.
Yang, Batch label inference and replacement attacks in
black-boxed vertical federated learning, arXiv preprint
arXiv: 2112.05409, 2021.

[22]

 Y. Li, Y. Li, B. Wu, L. Li, R. He, and S. Lyu, Invisible
backdoor attack with sample-specific triggers, in Proc.

[23]

2021 IEEE/CVF Int. Conf. Computer Vision (ICCV),
Montreal, Canada, 2021, pp. 16443–16452.
 J. Zhang, B. Chen, X. Cheng, H. T. T. Binh, and S. Yu,
PoisonGAN: Generative poisoning attacks against
federated learning in edge computing systems, IEEE
Intern. Things J., vol. 8, no. 5, pp. 3310–3322, 2021.

[24]

 A. Saha, A. Subramanya, and H. Pirsiavash, Hidden
trigger backdoor attacks, in Proc. AAAI Conf. Artificial
Intelligence, vol. 34, no. 7, pp. 11957–11965, 2020.

[25]

 T. D. Nguyen, P. Rieger, M. Miettinen, and A. R. Sadeghi,
Poisoning attacks on federated learning-based IoT
intrusion detection system, in Proc. Workshop on
Decentralized IoT Systems and Security, San Diego, CA,
USA, 2020, pp. 1–7.

[26]

 K. Y. Yoo and N. Kwak, Backdoor attacks in federated
learning by rare embeddings and gradient ensembling, in
Proc. 2022 Conf. Empirical Methods in Natural Language
Processing, Abu Dhabi, United Arab Emirates, 2022, pp.
72–88.

[27]

 A. N. Bhagoji, S. Chakraborty, P. Mittal, and S. B. Calo,
Analyzing federated learning through an adversarial lens,
in Proc. 36th Int. Conf. Machine Learning, Long Beach,
CA, USA, 2019, pp. 634–643.

[28]

 J. Jiang, X. Liu, and C. Fan, Low-parameter federated
learning with large language models, arXiv preprint
arXiv:2307.13896, 2023.

[29]

 T. Nguyen and M. T. Thai, Preserving privacy and
security in federated learning, IEEE/ACM Trans. Netw.,
vol. 32, no. 1, pp. 833–843, 2024.

[30]

 Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V.
Chandra, Federated learning with Non-IID data, arXiv
preprint arXiv: 1806.00582, 2018.

[31]

 F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu, 1-bit
stochastic gradient descent and its application to data-
parallel distributed training of speech DNNs, in Proc.
Interspeech 2014, Singapore, 2014, pp. 1058–1062.

[32]

 S. U Stich, J. B. Cordonnier, and M. Jaggi, Sparsified
SGD with memory, in Proc. 32nd Int. Conf. Neural
Information Processing Systems, Montréal, Canada, 2018,
pp. 4452–4463.

[33]

 X. Yang, Z. Chen, K. Li, Y. Sun, N. Liu, W. Xie, and Y.
Zhao, Communication-constrained mobile edge computing
systems for wireless virtual reality: Scheduling and
tradeoff, IEEE Access, vol. 6, pp. 16665–16677, 2018.

[34]

 J. Mills, J. Hu, and G. Min, Multi-task federated learning
for personalized deep neural networks in edge computing,
IEEE Trans. Parallel Distrib. Syst., vol. 33, no. 3, pp.
630–641, 2022.

[35]

 A. Z. Tan, H. Yu, L. Cui, and Q. Yang, Towards
personalized federated learning, IEEE Trans. Neural
Network. Learn. Syst., vol. 34, no. 12, pp. 9587–9603,
2023.

[36]

 A. Mathew, P. Amudha, and S. Sivakumari, Deep learning
techniques: An overview, in Proc. Int. Conf. Advanced
Machine Learning Technologies and Applications,
Singapore, 2021, pp. 599–608.

[37]

 N. Houlsby, A. Giurgiu, S. Jastrzebski, B. Morrone, Q. De
Laroussilhe, A. Gesmundo, M. Attariyan, and S. Gelly,
Parameter-efficient transfer learning for NLP, in Proc. 36th

[38]

 12 Big Data Mining and Analytics, xxxx xxxx, x(x): 1−14

https://doi.org/10.1109/ACCESS.2019.2909068
https://doi.org/10.3390/fi13030073
https://doi.org/10.1016/j.engappai.2023.107166
https://doi.org/10.1109/JIOT.2020.3023126
https://doi.org/10.1109/JIOT.2020.3023126
https://doi.org/10.1109/TNET.2023.3302016
https://doi.org/10.1109/ACCESS.2018.2817288
https://doi.org/10.1109/TPDS.2021.3098467
https://doi.org/10.1109/TNNLS.2022.3160699
https://doi.org/10.1109/TNNLS.2022.3160699

Int. Conf. Machine Learning, Long Beach, CA, USA,
2019, pp. 2790–2799.
 E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S.
Wang, L. Wang, and W. Chen, Lora: Low-rank adaptation
of large language models, arXiv preprint
arXiv:2106.09685, 2021.

[39]

 A. Jeddi, M. J. Shafiee, and A. Wong, A simple fine-
tuning is all you need: Towards robust deep learning via
adversarial fine-tuning, arXiv preprint arXiv: 2012.13628,
2020.

[40]

 R. He, L. Liu, H. Ye, Q. Tan, B. Ding, L. Cheng, J.-W.
Low, L. Bing, and L. Si, On the effectiveness of adapter-
based tuning for pretrained language model adaptation,
arXiv preprint arXiv:2106.03164, 2021.

[41]

 Y. L. Sung, J. Cho, and M. Bansal, VL-ADAPTER:
Parameter-efficient transfer learning for vision-and-
language tasks, in Proc. 2022 IEEE/CVF Conf. Computer
Vision and Pattern Recognition, New Orleans, LA, USA,
2022, pp. 5217–5227.

[42]

 X. Wang, L. Aitchison, and M. Rudolph, LoRA ensembles
for large language model fine-tuning, arXiv preprint
arXiv:2310.00035, 2023.

[43]

 J. Kaddour, J. Harris, M. Mozes, H. Bradley, R. Raileanu,
and R. McHardy, Challenges and applications of large
language models, arXiv preprint arXiv: 2307.10169, 2023.

[44]

 L. Truong, C. Jones, B. Hutchinson, A. August, B.
Praggastis, R. Jasper, N. Nichols, and A. Tuor, Systematic
evaluation of backdoor data poisoning attacks on image
classifiers, in Proc. 2020 IEEE/CVF Conf. Computer

[45]

Vision and pattern Recognition Workshops, Seattle, WA,
USA, 2020, pp. 3422–3431.
 A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G.
Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et
al., PyTorch: An imperative style, high-performance deep
learning library, in Proc. 33rd Int. Conf. Neural
Information Processing Systems, Vancouver, Canada,
2019, p. 721.

[46]

 S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D.
B. Kirk, and W. W. Hwu, Optimization principles and
application performance evaluation of a multithreaded
GPU using CUDA, in Proc. 13th ACM SIGPLAN Symp.
Principles and Practice of Parallel Programming, 2008,
pp. 73–82.

[47]

 A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G.
Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
et al., PyTorch: An imperative style, high-performance
deep learning library, in Proc. Advances in Neural
Information Processing Systems 32 (NeurIPS 2019),
Vancouver, Canada, 2019, pp. 8024–8035.

[48]

 T. M. H. Hsu, H. Qi, and M. Brown, Measuring the effects
of non-identical data distribution for federated visual
classification, arXiv preprint arXiv: 1909.06335, 2019.

[49]

 Y. Li, M. Ya, Y. Bai, Y. Jiang, and S.-T. Xia,
Backdoorbox: A python toolbox for backdoor learning,
arXiv preprint arXiv:2302.01762, 2023.

[50]

 L. van der Maaten and G. Hinton, Visualizing data using t-
SNE, J. Mach. Learn. Res., vol. 9, no. 86, pp. 2579–2605,
2008.

[51]

Senmao Qi received the BEng degree
from Shandong University, China in 2021.
He is currently a PhD candidate at School
of Computer Science and Technology,
Shandong University, China. His research
interests include distributed machine
learning, AI security, and wireless
network.

Hao Ma is currently an undergraduate
student at School of Computer Science and
Technology, Shandong University, China.
His research interests include federated
learning and AI security.

Yifei Zou received the BEng degree from
Wuhan University, China in 2016, and the
PhD degree from The University of Hong
Kong, China in 2020. He is currently an
assistant professor at School of Computer
Science and Technology, Shandong
University, China. His research interests
include wireless networks, ad hoc

networks, and distributed computing.

Yuan Yuan received the BS degrees from
Shanxi University, China in 2016, and the
PhD degree from Shandong University,
China in 2021. She is currently a
postdoctoral researcher at Shandong
University-Nanyang Technological
University International Joint Research
Institute on Artificial Intelligence,

Shandong University, China. Her research interests include
distributed computing and distributed machine learning.

Zhenzhen Xie received the MEng and
PhD degrees in computer science from
Jilin University, China in 2014 and 2021,
respectively. She is currently a
postdoctoral researcher at School of
Computer Science and Technology,
Shandong University, China. Her research
areas are edge computing, IoTs, and

federated learning.

 Senmao Qi et al.: Backdoor Attack to Giant Model in Fragment-Sharing Federated Learning 13

Peng Li received the PhD degrees in
computer science from The University of
Aizu, Japan, where he is currently an
associate professor. His research interests
mainly focus on wired/wireless
networking, cloud/edge computing,
distributed AI systems, and blockchain. He
has authored or co-authored over 100

papers in major conferences and journals. He won the 2020 Best
Paper Award of IEEE Transactions on Computers. He serves as
the chair of SIG on Green Computing and Data Processing in
IEEE ComSoc Green Communications and Computing
Technical Committee. He is a guest editor of IEEE Journal of
Selected Areas on Communications, the editor of IEEE Open
Journal of the Computer Society and IEICE Transactions on
Communications. He is a senior member of IEEE.

Xiuzhen Cheng received the MEng and
PhD degrees in computer science from
University of Minnesota, Twin Cities,
USA in 2000 and 2002, respectively. She
was a faculty member at Department of
Computer Science, The George
Washington University, USA in
2002−2020. Currently she is a professor of

computer science at Shandong University, China. Her research
focuses on blockchain computing, security and privacy, and
IoTs. She is a fellow of IEEE.

 14 Big Data Mining and Analytics, xxxx xxxx, x(x): 1−14

