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Abstract—Due to its decentralized framework and outdoor
environments, federated edge learning (FEEL) faces signifi-
cant vulnerability to malicious attacks within edge networks.
Prevailing FEEL approaches typically hinge on a dependable
parameter server (PS) to contend with the adversarial updates
from Byzantine clients. Recognizing the inherent unreliability
of PSs in edge networks, this paper delves into the security
challenges of FEEL, specifically addressing Byzantine PSs. We
present a Byzantine fault-tolerant FEEL algorithm, named Fed-
MS, in which a multi-server technique along with a newly
designed trimmed-mean-based model filter is employed. This
combination ensures that each client can obtain a feasible
global model for its local training, closely approximating a true
model aggregated by benign PSs. Furthermore, we propose a
sparse uploading strategy in Fed-MS to enhance communication
efficiency for model aggregation to multiple PSs. Theoretical
analysis demonstrates that, when Byzantine PSs are a minority,
Fed-MS achieves an expected convergence speed of O(1/T ) with
T defined as the number of training rounds, akin to state-of-the-
art works under non-Byzantine settings. Extensive experiments
are conducted on the CIFAR-10 dataset with MobileNet V2 as
the training model. The numerical results show that our Fed-MS
can improve the model accuracy from 10% to at least 76% under
the malicious attacks from Byzantine PSs. Our code is released
at https://github.com/haoma2772/Fed-MS.

Index Terms—Federated Learning, Edge Networks, Byzantine
Fault Tolerance.

I. INTRODUCTION

As an interdisciplinary of artificial intelligence and network-
ing, the federated edge learning (FEEL) enables large-scale
and privacy-preserving machine learning (ML) on the edge
scenarios and has witnessed significant growth in Industrial
Internet of Things networks [1], [2]. Under the federated learn-
ing (FL) framework, multiple clients can obtain a high-quality
global ML model by only sharing their local ML models
instead of data to others, which protects the privacy of users.
Besides, the edge-based parameter server (PS) provides the
clients with fast and green model exchange. Thus, the FEEL
has a higher efficiency and lower communication overhead,
compared with the traditional cloud-based FL framework [3].

Despite the advantages offered by the combination of FL
and edge computing, the openness and outdoor environments
of edge networks have posed new challenges on the reliability
and security of FEEL. Specifically, on the end side, the
openness of edge networks allows the adversarial clients to

* The corresponding author is Yifei Zou (yfzou@sdu.edu.cn).

easily join the FL process and degrade the performance of the
global model by uploading malicious local updates [4], [5].
Meanwhile, on the edge side, most the edge-based PSs are
deployed in some outdoor environments and they are more
susceptible to attacks compared to those in well-protected data
centers [3]. Since most of the existing FL schemes rely on a
reliable PS to aggregate and disseminate the global ML model,
they would fail if the outdoor PS is attacked and controlled
by an adversary.

To address the above security problems, a series of Byzan-
tine fault tolerant strategies have been proposed to enhance the
reliability and security of federated learning process, based
on statistics, clustering, and differential privacy techniques.
In statistics-based strategies, the median, geometric median
and trimmed mean statistics are adopted in [6], [7] to find a
representative estimation of true results by removing the sus-
piciously large or small parameters in each dimension of the
uploaded local model, which can mitigate the negative impacts
from the malicious clients. Besides, an iterative Weiszfeld
algorithm is employed in FL via over-the-air computation,
effectively computing the smoothed geometric median aggre-
gation result to counter Byzantine attack [8]. Additionally, the
cluster-based methods, such as Krum [9], Bulyan [10], AFA
[11], Fools-Gold [12], and Auror [13], have been designed
to identify and remove Byzantine models or gradients. In
recent years, the differential privacy technique has been used
to mitigate the impact of backdoor attacks from Byzantine
clients by adding random noise to the pruned model or gradient
[14], [15]. Even though the aforementioned works can resist
Byzantine attacks from the malicious clients on the end side,
all of them rely on a reliable PS to realize the global model
aggregation and dissemination. To the best of our knowledge,
few of the existing works consider the FEEL problem with
unreliable or even Byzantine PSs.

In this paper, we consider the federated edge learning
problem with the Byzantine edge-based PSs. Unlike the PSs
located in the well-protected data centers, many edge-based
PSs are deployed in an outdoor environment and faces various
attacks from the adversaries [16]. If a PS is attacked and
controlled by an adversary, the aggregated global model can
be arbitrarily tampered and delivered to the clients. Then, the
FL process moves to an unconvergent direction even though
all the clients are the benign ones. In Fig. 1(a), we show how
a Byzantine PS mislead the benign clients with a malicious
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(a) The existing FL algorithms is hard to survive if its PS is Byzantine.
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(b) Our Fed-MS is Byzantine resilient with Multiple PSs.

Fig. 1: The existing works rely on single PS to aggregate and disseminate the global model. If the PS is a Byzantine one,
it can mislead the benign clients with a malicious global model; Our FedMS has multiple PSs to participate in the model
aggregation and dissemination, which attenuate the negative impacts from Byzantine PSs.

global model. Since most of the existing Byzantine-resilient
FL strategies rely on a reliable PS to aggregate the non-
Byzantine global model, they no longer have the provable
performance if the PS was attacked. Thus, we can believe
that the investigation on the FEEL with unreliable PSs in this
paper is necessary and significant.

To defend against the potential Byzantine PSs on the edge
side, a Byzantine-resilient Federated edge learning algorithm
with Multiple Servers (termed as Fed-MS for short) is pro-
posed in this paper. As is illustrated in the Fig. 1(b), our Fed-
MS comprises multiple PSs on the edge side and a group of
clients on the end side. We say a PS is a Byzantine one if
it is attacked and controlled by an adversary. A Byzantine
PS can deviate arbitrarily from the protocol they are specified
to execute to cause a wide variety of faults. Otherwise, we
say the PS is a benign one. We assume that the distribution
of the Byzantine PSs on the edge side is unknown for the
clients and can be arbitrary, but the total number of Byzantine
PSs should be the minority compared with the number of
benign PSs. Otherwise, the FEEL problem with Byzantine
PSs is unfeasible. Considering that the clients have little
knowledge on which PSs are the Byzantine ones, the clients
in our Fed-MS upload their local models to multiple PSs. The
multiple PSs aggregate the uploaded local models and deliver
the aggregated results to the clients in parallel. Since the
Byzantine PSs are the minority, the majority of the aggregated
global models received by a client are benign. To figure out
a non-Byzantine global model from those benign ones, a
trimmed-mean-based model filter is designed for each client,
the input of which are those Byzantine and benign global
models and the output of which is a feasible global model
that is not far away from the benign global models. Such
a feasible global model selected by the trimmed-mean-based
model filter will be used by clients in the next-round local
training. Additionally, considering that uploading the local
models to the multiple PSs overloads the resource-constrained
edge network, a sparse uploading strategy is designed for each

client to guarantee the communication efficiency of our Fed-
MS algorithm. With the sparse uploading strategy, our Fed-
MS has the same communication overhead with a general FL
process based on single PS on model aggregation. Finally,
we prove that our Fed-MS achieves a convergence speed
of O(1/T ) in expectation with T defined as the number of
training rounds, which is similar with the results in the state-
of-the-art [17], [18], and [19] under non-Byzantine setting.
Extensive simulations are conducted to verify the performance
of our algorithm. The contributions of our work are listed in
the following:

• Different from most of the previous FL works that rely
on reliable PSs to address the Byzantine behaviors from
the clients, this paper is the first one considering the FL
with Byzantine PSs, which is a realistic and significant
security problem when FL is extended to the outdoor edge
computing environments.

• To address the FL problem with Byzantine PSs, we
propose a Byzantine-resilient Federated edge learning
algorithm with Multiple Servers, termed as Fed-MS for
short. To defend the malicious global models aggregated
by the Byzantine PSs, multiple PSs are used in Fed-
MS for global model aggregation and dissemination. A
trimmed mean-based model filter is adopted by each
clients to figure out a feasible global model for next-
round local training, when it receives multiple global
models from the PSs. Besides, a sparse uploading strategy
is designed in Fed-MS for the communication efficient
model aggregation. With the sparse uploading strategy,
the communication overload of our Fed-MS on model
aggregation is the same with those classical FL works
with single PS.

• With theoretical proofs, we show that when the number
of Byzantine PSs is the minority, our Fed-MS algorithm
achieves the convergence speed of O(1/T ) with T de-
fined as the number of training rounds. Our result is the
same with that in the state-of-the-art works [17]–[19]
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under non-Byzantine setting.
• Extensive experiments are conducted on the CIFAR-

10 dataset with MobileNet V2 proposed in [20]. Four
common Byzantine attacks including Noise, Random,
Safeguard and Backward attacks [21] are deployed on the
PSs. Numerical results show that our Fed-MS can achieve
about 70% ∼ 76% prediction accuracy after 60 rounds
of training. Compared with 10% accuracy of the vanilla
FedAvg, Fed-MS has a strong Byzantine resilience.

Roadmap. The rest of this paper is organized as follows.
We present the related work in Section II. The FEEL system,
Byzantine model and problem formulation are given in Section
III. Our Fed-MS algorithm is introduced in Section IV, with
its convergence proved in Section V and numerical results
reported in Section VI. In Section VII, we conclude our paper.

II. RELATED WORK

Byzantine Fault Tolerant Federated Learning. The dis-
tributed framework of FL allows the Byzantine clients to share
malicious updates without being detected, which reduces the
accuracy of the global model. In recent years, several Byzan-
tine fault tolerant methods have been proposed to mitigate the
disruption caused by the Byzantine updates from the clients,
such as the statistics-based strategies in [6]–[8], [22]–[24],
the clustering methods in [9]–[13] and the differential privacy
techniques in [14], [15], [25]. Specifically, robust statistics
such as median and trimmed mean are used in [6] to help
the PS find a probable estimation of the multiple models or
gradients updated from the clients, some of which may be
Byzantine. By calculating the median or trimmed mean of
each dimension of the received parameter results, the PS in
[22] removes the impact of extreme values on the aggregation
results and obtains an error-bounded estimation on the true
results. Similar statistics also include geometric medians in
[7] and [8], which are widely used to defense the Byzantine
attacks from the clients. In addition, Krum in [9], Bulyan in
[10], AFA in [11], Fools-Gold in [12] and Auror in [13] use the
clustering schemes to identify and remove the malicious results
uploaded from Byzantine clients. The clustering-based studies
assume that the local data of benign clients follows certain
specific distributions, such as i.i.d.. So the models or gradients
uploaded by benign clients are similar with each other, and
different from the results uploaded by malicious clients. In
recent years, the differential privacy model aggregation has
been proven to be an efficient method to defend against the
differential attacks and gradient inversion attacks from Byzan-
tine clients [14], [15], [25]. Whereas, most of the existing
Byzantine-resilient works consider the potential attacks from
the malicious clients and rely on a reliable PS to implement
their defense strategies. In this paper, we consider the relative
Byzantine resilient problem with unreliable PSs, which is a
realistic security problem when the FL are extended to the
edge computing environment and harder than the previous
Byzantine-resilient works relying on a reliable PS.

Federated Learning with Multi-Servers. In this paper,
the multi-servers are used in our FEEL algorithm to defend

against the edge-side Byzantine attacks. Honestly speaking,
the multi-server technique has already been used to solve
the heterogeneous, personalized, and split federated learning
problems. For instance, the clients with similar capabilities or
data distribution will be grouped in hierarchical FL. Within
each group, the model aggregation is performed using a dedi-
cated parameter server to mitigate the challenges arising from
the heterogeneity or personality among various clients [26]–
[29]. In [30], the convergence analysis under the hierarchical
federated learning with multiple PSs is given. In [31], [32], the
main server and Fed server are used in split federated learning
for model update and aggregation respectively. To the best of
our knowledge, few of the works address the Byzantine fault
tolerant FL problem with multi-server technique.

III. SYSTEM MODEL AND PROBLEM DEFINITIONS

In this section, our FEEL system model, the Byzantine
model for edge-based PSs and the problem definition for
Byzantine resilient FEEL problem are introduced one by one.

A. Federated Edge Learning Model with Byzantine PSs

We consider a FEEL system with K clients on the end side
for local training and P parameter servers on the edge side
for global model aggregation and dissemination. Each client k
has a local training dataset Dk and a local objective function
Fk(w;Dk) ≜ 1

|Dk|
∑

{x,y}∈Dk
L(w; {x, y}), where w is the

model parameter of d dimensions and L(w; {x, y}) is the
corresponding loss function on a specific sample {x, y}. The
goal of our FEEL is to find a optimal global model parameters
w∗ that can minimize the linear combination of each local
object function:

w∗ = argmin
w∈Rd

1

K

K−1∑
k=0

Fk(w;Dk) (1)

We use the classical synchronized method of FedAvg [33] to
optimize the goal in (1), which includes the following three
stages in each training round t.

• Local Training. Each client k conducts mini-batch
Stochastic Gradient Descent (SGD) for E times to opti-
mize the local objective Fk(w;Dk), i.e. wk

t,i+1 = wk
t,i −

ηt,i∇Fk(w
k
t,i, ξ

k
t,i), for i = 0, 1, ..., E − 1. wk

t,i denotes
i-th local model updates of client k in the training round
t, ∇Fk(w

k
t,i, ξ

k
t,i) is the gradient of the given parameters,

ηt,i is the corresponding learning rate and ξkt,i is a mini-
batch randomly sampled from the local dataset Dk.

• Model Aggregation. Each client k selects one or multiple
PSs to upload its local model parameters wk

t,E . For each
PS i, it averages the received local models from the
clients, i.e ait+1 = 1

|Ni|
∑

k∈Ni
wk

t,E , where Ni is the
set of clients that select PS i to upload its local model.

• Model Dissemination. Each PS i disseminates its aggre-
gated result ait+1 to the clients. After receiving multiple
global models from all the PSs, each client has to figure
out a feasible model to start its next-round local training.

The above process will continue until the ML model on each
client converges.
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Capability and Knowledge of Byzantine PSs. We assume
that some parameter servers have Byzantine behavior, that is,
they can produce some misleading results to clients, degrading
the efficiency of federated learning. In this paper, we consider
a strong Byzantine behavior whose characteristics are summa-
rized as follows:

• Unknown Distribution. We assume that there are B
Byzantine PSs hidden behind all the P PSs. The distribu-
tion of the Byzantine PSs can be arbitrary and unknown
for the clients. The only restriction is B ≤ P/2, which
indict Byzantine PSs is minority.

• Arbitrary Tampering. After aggregating the local mod-
els from multiple clients, the Byzantine PS can arbitrarily
tamper the aggregated global model in its model dis-
semination step. In a worst case, a Byzantine PS can
send various tampered models to different clients. Such
a Byzantine behavior cannot be detected since the clients
cannot directly communicate with each other.

• Adaptive Knowledge. The Byzantine PSs can have a
full knowledge on the FEEL algorithm, the history and
current state of the FL process, and can adapt their
behaviors according to the obtained information. Such
a setting is termed as adaptive adversary in [34].

Capability and Knowledge of Clients. We assume that all
clients have the same capabilities on their training devices
and are synchronized in the above local training, model
aggregation, and model dissemination stages. Clients know
the total number of edge-based PSs P but has little knowledge
for the Byzantine PSs, except their number B. When receiving
multiple global models from the PSs, it is hard for the clients to
distinguish whether a global model is tampered by a Byzantine
PS. Important notations in the model, algorithm description
and analysis sections are summarized in Table I.

Notations Definition
K,K Number, set of clients
P,P Number, set of PSs
B,B Number, set of Byzantine PSs
Dk Local training data of client k
Fk(·) Local object of client k
∇Fk(·) Gradient of Fk

ξkt,i A mini-batch of client k
L(·, ·) Loss function
wk

t,i i-th local model parameter of client k in round t
E Number of local iterations
w∗ Optimal global model
∥ · ∥2 L2 norm
ηt,i Learning rate of i-th local iteration in round t
ai
t Aggregation result of PS i in round t

ãi
t Dissemination result from PS i in round t

Ni Set of clients that select PS i
β Trimmed rate

TABLE I: Important notations.

B. Problem Definition

To overcome the potential attacks from the Byzantine PSs,
when a client receives multiple aggregated models from the
PSs, it has to figure out a feasible global model that is not

far away from the global models aggregated by the benign
PSs. Therefore, the key component in the Byzantine fault
tolerant FL problem with Byzantine PSs is to find a defense
method Def( ), the input of which are those Byzantine and
benign global models and the output of which is a feasible
global model for the next-round local training. With the help
of Def( ), the clients finally obtain the high-performance ML
models. Let ãit denote the dissemination result of PS i in round
t, which is equal to ait for a benign PS and can be arbitrary
for a Byzantine PS. Then, our objective can be expressed in
the following:

min
w∈Rd

1

K

K−1∑
k=0

Fk(w;Dk),

with (1) wk
t+1,0 = Def(ã0

t , ã
1
t , ..., ã

P−1
t ), k ∈ K, t = 0, 1, 2, ...

(2) wk
t,i+1 = wk

t,i − ηt,i∇Fk(w
k
t,i, ξ

k
t,i),

k ∈ K, i = 0, 1, ..., E − 1, t = 0, 1, 2, ...

(3) ai
t+1 =

1

|Ni|
∑
k∈Ni

wk
t,E , i ∈ P, t = 0, 1, 2, ...

(2)
In the above objective, K,P and B represent the set of

clients, parameter servers and Byzantine nodes respectively.
Our goal is to find a feasible global model from mixed bag
aggregation results from multiple servers by using Def( ). In
this paper, we use statistics-based trimmed mean to achieve
this goal, and provide the corresponding theoretical analysis.

IV. BYZANTINE-RESILIENT FEEL ALGORITHM

A. Challenges and Solutions in Algorithm Description.

We consider the Byzantine resilient FEEL problem with
multiple PSs, some of which are Byzantine. Intuitively speak-
ing, if the distribution of Byzantine PSs was known by the
clients, the FEEL problem can be solved by letting all the
clients choose the benign PSs to do the model aggregation
and dissemination. Considering that the clients have little
knowledge of Byzantine PSs, we have the following two
challenges in our algorithm design. The first challenge is
how to aggregate sufficient local models to the benign PSs,
especially when the benign PSs cannot be distinguished by
the clients. The second challenge is when a client receives
multiple global models from the Byzantine and Benign PSs,
how can it figure out a feasible global model for next-round
local training. We say a global model is feasible when it is not
far away from the global models aggregated by the benign PSs.
Only when the first challenge is solved, can we guarantee that
there are sufficient local models aggregated by the benign PSs.
When the second challenge is solved, the clients can make full
use of the global models provided by the benign PSs, which
speeds up their local convergence processes.

To overcome the first challenge, a trivial approach is to let
each client upload its local model to all the PSs. Thus, each of
the benign clients must receive the local models from all the
clients. Whereas, the communication cost would be K × P ,
which is P times larger than that in a classical FL with single
PS. Considering that such a communication cost may overload
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the resource-constrained edge network, a sparse uploading
strategy is adopted in our algorithm for a communication
efficient model uploading. In our sparse uploading strategy,
each client randomly and uniformly choose a PS to upload its
local model. By doing this, the communication cost is K,
which is the same with that in a classical FL with single
PS. The trade-off of our strategy is that each client receives
the various local model from the different clients. Thus, their
aggregated results are not the same, which makes our proofs
on convergence harder.

To address the second challenge, a trimmed-mean-based
model filter is design for each client. Specifically, when a
client receives multiple global models from the Byzantine and
benign PSs, a fraction of largest and smallest parameters in
each dimension of the global model will be removed. Then,
the remaining parameters in each dimension will be averaged
by the client to form a feasible global model for its next-
round local training. Since a Byzantine PS can disseminate
inconsistent models to different client, the feasible global
models obtained by different clients are not the same, which
also makes our proofs on convergence harder.

B. Detailed Description for Algorithm Design

Similar with the classical FedAvg algorithm [17], our
Byzantine fault tolerant Fed-MS algorithm also consists of
three stages in each training round t. In the first local train-
ing stage, each client k performs E local iterations, where
each iteration utilizes a mini-batch sampled from its local
dataset Dk for stochastic gradient descent. In formal words,
wk

t+i+1 ← wk
t+i − ηt+i∇Fk(w

k
t+i).

Then, we proceed to the model aggregation stage. Note that
there are P PSs on the edge side, B of which are the Byzantine
ones. Each client k randomly and uniformly selects a PS from
the P PSs to upload its latest local model wk

t+E . Meanwhile,
each of the benign PSs averages the received local models
to obtain its global model. However, the Byzantine PSs can
perform arbitrary in model aggregation stage.

In the model dissemination stage, the benign PSs dissem-
inate its global model obtained in aggregation stage to all
the clients. For the Byzantine PSs, it can arbitrarily tamper
its aggregated global model and disseminate the tampered
global model to the clients. After receiving the global models
from the P PSs, each client computes the trimmed mean
trmeanβ{ } for all results where β = B/P is the trimmed
rate. Specifically, in each dimension, the parameters of the
largest and smallest β components are discarded and the re-
maining results are averaged. The result computed by trimmed
mean method will be regarded as a feasible global model and
used in the next-round local training. The pseudocode of our
Fed-MS is given in Algorithm 1.

An example for the trimmed mean function. For example,
trmean0.2{1, 2, 3, 4, 5} will remove 20% of the smallest and
largest values, i.e. 1 and 5, and then average the remaining
results, i.e. (2 + 3 + 4)/3 = 3.

Algorithm 1: Byzantine resilient Fed-MS
For each parameter server i:

1 for each round t = 0, 1, 2, ... do
2 Wait for clients to finish local training;

// Local training stage
3 Receive the local models from the clients in set Ni;

// Ni is the set of clients that
upload local models to PS i

4 ait+1 = 1
|Ni|

∑
k∈Ni

wk,t,E ;
// Model aggregation stage

5 Broadcast ait+1 to all the clients;
// Model dissemination stage

For each client k:,
6 Initialization: wk,0,0 = w0;
7 for each round t = 0, 1, 2, ... do
8 for each epoch i = 0, 1, ..., E − 1 do
9 Randomly sample a mini-batch ξkt,i from Dk;

10 wk
t,i+1 = wk

t,i − ηt,i∇Fk(w
k
t,i, ξ

k
t,i);

// Local training stage
11 Randomly select a PS to upload wk,t,E ;

// Model aggregation stage
12 Receive the global models from P parameter

servers, denoted by ã0t+1, ã
1
t+1, ..., ã

P−1
t+1 ;

13 wk,t+1,0 = trmeanβ{ã0t+1, ã
1
t+1, ..., ã

P−1
t+1 };

// Model dissemination stage

V. CONVERGENCE ANALYSIS

A. Notations and Assumptions

Considering that each client will perform E local iterations
in each round, for the convenience, we borrow the notations
used in [17] and [35] to analyze the impact of each step of
mini-batch SGD on model update. Specifically, we introduce
two additional variable vkt , e

k
t to rewrite the iterative process

of Byzantine fault tolerant FL into the following form.

vkt+1 = wk
t − ηt∇Fk(w

k
t , ξ

k
t )

wk
t+1 =

{
vkt+1 , if t+ 1 /∈ IE
ekt+1 , if t+ 1 ∈ IE

(3)

In the above equation, vkt+1 is used to reflect the direct one step
model parameters after a mini-batch SGD. IE = {nE|n ∈ N}
represents all the steps where we conduct model aggregation.
ekt+1 represents the feasible global model of client k at step
t+ 1 by using trimmed mean, which is defined as:

ekt+1 = trmeanβ{ã0
t+1, ã

1
t+1, ..., ã

P−1
t+1 },

s.t.
1

|Ni|
ai
t+1 =

∑
k∈Ni

vkt+1, ∀i ∈ P

ãi
t+1 = aj

t+1, ã
j
t+1 = Any Value, i ∈ P \ B, ∀j ∈ B

(4)

The above equation represents the result of multiple PSs
aggregation and the process of global model estimation based
on trimmed mean. We define two virtual sequences vt =
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1
K

∑K
k=0 v

k
t and wt =

1
K

∑K
k=0 w

k
t . Similarly, we additionally

introduce at = 1
K

∑K
k=0 a

i
t and et = 1

K

∑K
k=0 e

k
t . At last,

we define gt = 1
K

∑K
k=0∇Fk(w

k
t , ξ

k
t ) and gt = E(gt) =

1
K

∑K
k=0∇Fk(w

k
t ). The above newly introduced variables

reflect the average value of the corresponding variable, making
it convenient for us to bound their variances.

Compared with the classical FedAvg in which the local
models of the all clients contribute to a global model, the
error in our Fed-MS mainly comes from two parts: the first
part is under sparse uploading, thus there is a certain error
between at and vt before. The second part is due to the
existence of Byzantium, et, as an estimation of at, is also
biased. This in turn leads to differences in the expectations of
wt and vt. Noting that in the absence of Byzantine nodes, the
expectations of them are the same. Before formally starting
the convergence analysis, we make the following assumptions
on the local object function:

Assumption 1. For any client k, Fk is L-smooth, i.e., for all
u and v, Fk(u) ≤ Fk(v) + (u− v)T∇Fk(v) +

L
2 ∥u− v∥22.

Assumption 2. For any client k, Fk is µ-strongly convex, i.e.,
for all u and v, Fk(u) ≥ Fk(v)+(u−v)T∇Fk(v)+

µ
2 ∥u−

v∥22.

Assumption 3. For any client k, let ξkt be a mini-batch sam-
pled from local dataset Dk uniformly and randomly. The vari-
ance of stochastic gradient is bounded, i.e., E∥∇Fk(w

k
t , ξ

k
t )−

∇Fk(w
k
t )∥22 ≤ σ2

k, where ∇Fk(w
k
t ) is the expectation of

Fk(w
k
t , ξ

k
t ).

Assumption 4. For any client k, the expected expected
squared norm of stochastic gradients is uniformly bounded,
i.e., E∥∇Fk(w

k
t , ξ

k
t )∥22 ≤ G2 for all time-step t.

It is worth mentioning that the assumption 1-4 are very
common assumptions in theoretical federated learning [17]–
[19], [22]. Here we give conclusions about the convergence
of the algorithm.

B. Analysis for estimation error

According to the variables defined above, we can easily
obtain the following relationship:

vt+1 = wt − ηt ∗ gt

wt+1 =

{
vt+1 , if t+ 1 /∈ IE
et+1 , if t+ 1 ∈ IE

(5)

It can be found that when t ∈ IE , wt+1 and vt+1 are not equal,
and wt+1 is a biased estimate of vt+1, so we first analyze the
error of this estimation.

Lemma 1. If assumption 4 holds and ηt is non-increasing with
ηt ≤ 2ηt+E , we have:

E( 1
K

K−1∑
k=0

∥wt − wk
t ∥22) ≤ 4η2

tE
2G2

Proof. Consider an interval I = [t0, t0 + E] where t0 = nE
and n ∈ N, for any t ∈ I , we have:

E( 1
K

K−1∑
k=0

∥wt − wk
t ∥22)

=E( 1
K

K−1∑
k=0

K−1∑
k=0

∥wk
t − wt0 + wt0 − wk

t ∥22)

≤E
K−1∑
k=0

1

K
∥wk

t − wt0∥
2
2 ≤ E

K−1∑
k=0

1

K
∥wk

t − wk
t−1 + ...− wt0∥

2
2

≤
K−1∑
k=0

1

K

t∑
t=t0+1

(t− t0)η
2
t0G

2 ≤
K−1∑
k=0

η2
t0

K
E2G2 ≤ 4η2

tE
2G2

(6)
In the above equation, the first inequality arises from the fact
that E∥(wk

t −wt0)−E(wk
t −wt0)∥22 ≤ E∥(wk

t −wt0)∥22. The
third inequality and last inequality arise from assumption 4
and ηt0 ≤ 2ηt0+E ≤ 2ηt. Lemma 1 shows that the variance of
the client model parameters is gradually reduced within each
local iteration interval I . ■

Lemma 2. If assumption 4 holds, and ηt is non-increasing
with ηt ≤ 2ηt+E , we have:

E∥et+1 − at+1∥22 ≤
4P

(P − 2B)2
· η2tE2G2

Proof. Let us first consider a simple situation. For a group of
scalars S = {p0 ≤ p1 ≤ ... ≤ pP−1}, we arbitrarily tamper
with the B < P/2 numbers and get a new set of scalars
S̃ = {q0 ≤ q1 ≤ ... ≤ qP−1}. Then we have:

pk−B ≤ qk ≤ pk+B , ∀k ∈ [B,P −B − 1] (7)

This conclusion is easily obtained by proof by contradiction.
If pk−B > qk, it indicts that there are at least k+1 numbers in
S̃ smaller than pk−B . Therefore, at least B+1 numbers in S
need to be reduced, which is contrary to the fact that only B
numbers can be modified. The proof of qk ≤ pk+B is similar.
Besides, we have:

E[( 1

P − 2B

P−2B−1∑
k=0

pk − µ)]2 ≤ E[( 1

P − 2B

K−1∑
k=0

pk − µ)]2

≤ Kσ2

(P − 2B)2

(8)

In the above equation, µ and σ2 denote the expectation
and variance of scalars in S. Similarly, we also have:
E[( 1

P−2B

∑P−1
k=2B pk−µ)]2 ≤ Kσ2

(P−2B)2 . Combining the above
conclusions, for a trimmed mean function of a trimmed
rate β = B/P , we have: 1

P−2B

∑P−2B−1
k=0 pk − µ ≤

trmeanβ{q0, ..., qP−1} ≤ 1
P−2B

∑P−1
k=2B pk − µ. Then, the

variance of trimmed mean can be bounded as:

E(trmeanβ{q0, ..., qP−1} − µ)2

≤ max{E( 1

P − 2B

P−2B−1∑
k=0

pk − µ)2,E( 1

P − 2B

P−1∑
k=2B

pk − µ)2}

≤ Pσ2

(P − 2B)2
(9)
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Equation (9) reflects that the estimation error of trimmed mean
can be bounded by the variance of the sample. Let σ2

i denote
the variance of i-th dimension, we have:

E∥et+1 − at+1∥22 ≤
d−1∑
i=0

Pσ2
i

(P − 2B)2

≤ 4P

(P − 2B)2
· η2

tE
2G2

(10)

■

Lemma 3. In the model aggregation stage, if each client
adopts a sparse upload strategy, i.e. randomly selects a pa-
rameter server to upload its local model, then when t+1 ∈ IE ,
we have:

• Unbiased sample estimation:

E(at+1) = vt+1.

• Bounded variance:

E∥at+1 − vt+1∥22 ≤
K − P

K − 1
· 4
P
· η2tE2G2.

Proof. For each parameter server i, we know E(Ni) = K/P .
Therefore Ni can be regarded as a set that randomly select
K/P samples form K clients, which is same as FedAvg with
partial device participation. Therefore, according to Lemma
3 and 4 in [17], we know E(ait+1) = vt+1 and E∥ait+1 −
vt+1∥22 ≤ K−P

K−1 ·
4
P · η

2
tE

2G2. Thus, we have:

E∥at+1 − vt+1∥22 = E∥ 1

P

∑
i∈P

ai
t+1 − vt+1∥22

≤ 1

P

∑
i∈P

E∥ai
t+1 − vt+1∥22

=
K − P

K − 1
· 4

P
· η2

tE
2G2

(11)

The transformation in the above formula comes from the
convexity of the L2 norm and the Jensen’s inequality.

■

Corollary 4. If assumptions 4 holds, when t+ 1 ∈ IE , wt+1

can be regarded as a biased estimate of vt+1. Besides, the
estimation error ∥wt+1 − vt+1∥22 is bounded by 4P

(P−2B)2 ·
η2tE

2G2 + K−P
K−1 ·

4
P · η

2
tE

2G2.

C. Analysis for single step mini-batch SGD

Lemma 5. Assume that assumption 1, 2, 3 and 4 hold. If
learning rate ηt is non-increasing with ηt ≤ 2ηt+E and ηt ≤
1
4L , with Γ = F ∗ − 1

K

∑K−1
k=0 F ∗

k , we have:

E∥vt+1 − w∗∥22 ≤ (1− µηt)E∥wt − w∗∥22 + 6Lη2
tΓ

+ 8η2
tE

2G2 +
η2
t

K

K−1∑
k=0

σ2
k.

Proof. Obviously, from equation (5), we know that vt+1 =
wt − ηtgt holds for any time step t. Then, we have:

∥vt+1 − w∗∥22 = ∥wt − ηtgt − w∗ + ηtgt − ηtgt∥22
≤ ∥wt − ηtgt − w∗∥22 + η2t ∥gt − gt∥22

(12)

In equation (12), ∥wt − ηtgt − w∗∥22 represents the expected
result after a single-step mini-batch SGD, and ∥gt− gt∥22 rep-
resents the variance introduced by stochastic gradient descend.
We first prove that this variance can be bounded. Specifically,
if assumption 3 holds, we have:

E∥gt − gt∥22 = E∥ 1

K

K−1∑
k=0

(∇Fk(w
k
t , ξ

k
t )−∇Fk(w

k
t ))∥22

≤ 1

K

K−1∑
k=0

∥(∇Fk(w
k
t , ξ

k
t )−∇Fk(w

k
t ))∥22

≤ 1

K

K−1∑
k=0

σ2
k

(13)

We next analyze the impact of single-step mini-batch SGD.

∥wt − ηtgt − w∗∥22
=∥wt − w∗∥22 + η2

t ∥gt∥
2
2 − 2ηt < wt − gt, w

∗ >

≤∥wt − w∗∥22 +
2Lη2

t

K

K−1∑
k=0

(Fk(w
t
k)− F ∗

k )−
2ηt
K

K−1∑
k=0

(< wt − wk
t ,∇Fk(w

k
t ) > + < wk

t − w∗,∇Fk(w
k
t ) >)

(14)

The above formula uses the fact that if function Fk(·) is
L-smooth, we have: ∥∇Fk(w)∥22 ≤ 2L(Fk(w) − F ∗

k ). By
Cauchy-Schwarz inequality and AM-GM inequality, we have:

−2 < wt − wk
t ,∇Fk(w

k
t ) >≤ 1

ηt
∥wt − wk

t ∥22 + ηt∥∇Fk(w
k
t )∥22

(15)
If assumption 2 holds, we have:

−2 < wk
t − w∗,∇Fk(w

k
t ) > ≤ −2(Fk(w

k
t )− Fk(w

∗))

− µ∥wk
t − w∗∥22

(16)

By combining equation (14), (15) and (16), we have:

∥wt − ηtgt − w∗∥22

≤(1− µηt)∥wt − w∗∥22 +
1

K

K−1∑
k=0

∥wt − wk
t ∥22 +

4Lη2
t

K

K−1∑
k=0

(Fk(w
k
t )− F ∗

k )−
2ηt
K

K−1∑
k=0

(Fk(w
k
t )− Fk(w

∗))

(17)

In the equation (17), we can see that ∥wt − ηtgt − w∗∥22
is bounded by four terms. The first item represents the
recursive relationship, the second item represents the vari-
ance of the model parameters, and the third and fourth
items reflect the distance from the local optimal solution
and the global optimal in t-th round. We next try to
bound these items. Firstly, the variance of model param-
eters can be bounded by 4ηtE

2G2 according to Lemma
1. Then, let us define C =

4Lη2
t

K

∑K−1
k=0 (Fk(w

k
t )− F ∗

k ) −
2ηt

K

∑K−1
k=0 (Fk(w

k
t )− Fk(w

∗)), we can rewrite C as:

C = −γt
1

K

K−1∑
k=0

(Fk(w
k
t )− F ∗)︸ ︷︷ ︸

D

+4Lη2
tΓ (18)
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, where γt = 2ηt(1 − 2Lηt) and Γ = F ∗ − 1
K

∑K−1
k=0 F ∗

k

reflects the heterogeneity of data distribution. If the local data
are i.i.d, obviously E(Γ) = 0. To bound D, we have:

D =
1

K

K−1∑
k=0

(Fk(w
k
t )− Fk(wt) + Fk(wt)− F ∗)

≥ 1

K

K−1∑
k=0

< ∇Fk(wt), w
k
t − wt >+ (F (wt)− F ∗)

≥ 1

K

K−1∑
k=0

< ∇Fk(wt), w
k
t − wt >

(19)

In the above equation, the first inequality comes from As-
sumption 2, and the second inequality comes from the fact
that F (wt)−F ∗ ≥ 0. Then, by using AM-GM inequality, and
properties of Assumption 1, we have:

C ≤ 6Lη2
tΓ +

1

K

K−1∑
k=0

∥wt − wt
k∥22 (20)

Combine Lemma 1, equation (17) and (20), we have:

E∥vt+1 − w∗∥22 ≤ (1− µηt)E∥wt − w∗∥22 + 6Lη2
tΓ

+ 8η2
tE

2G2 +
η2
t

K

K−1∑
k=0

σ2
k

(21)

■

D. Convergence Analysis of Fed-MS

Theorem 1. Assume that assumption 1, 2, 3 and 4 hold, by
choosing γ = max( 8Lµ , E) and ηt =

2
µ(γ+t) , then we have:

E(F (wt)− F ∗) ≤ L

2µ(γ + t)
(4△+ γµ2∥w1 − w∗∥2)

, where△ = 6LΓ+8E2G2+ 1
K

∑K−1
k=0 σ2

k+
4P

(P−2B)2 ·E
2G2+

K−P
K−1 ·

4
P · E

2G2 and Γ = F ∗ − 1
K

∑K−1
k=0 F ∗

k .

Proof. Obviously, we have:

∥wt+1 − w∗∥22 = ∥wt+1 − vt+1 + vt+1 − w∗∥22
≤ ∥wt+1 − vt+1∥22︸ ︷︷ ︸

E1

+ ∥vt+1 − w∗∥22︸ ︷︷ ︸
E2

(22)

If t + 1 /∈ IE , vt+1 is an unbiased estimation of wt+1. If
t + 1 ∈ IE , from corollary 4, we know E1 can be bounded.
By using lemma 5, we have:

E∥wt+1 − w∗∥22

≤(1− ηtµ)E∥wt − w∗∥22 + 6Lη2
tΓ + 8η2

tE
2G2 +

η2
t

K

K−1∑
k=0

σ2
k

+
4P

(P − 2B)2
· η2

tE
2G2 +

K − P

K − 1
· 4

P
· η2

tE
2G2

≜(1− ηtµ)E∥wt − w∗∥22 + η2
t△

(23)
Equation (23) reflects the recursive relationship of model
parameters during the Fed-MS training process. Next, we use
this for reduction.

Considering ηt =
ϕ

t+γ and η1 ≤ min( 1µ ,
1
4L ) =

1
4L where

ϕ > 1
µ and γ > 0, we next to prove that E∥wt−w∗∥22 ≤ v

γ+t

where v = max( ϕ2△
ϕµ−1 , γ ·∥w0−w∗∥22). When t = 0, obviously

this conclusion holds. Suppose that it holds for a specific time-
step t ≥ 1, we have:

E∥wt+1 − w∗∥22

≤ (1− ϕµ

t+ γ
)

v

t+ γ
+

ϕ2△
(t+ γ)2

≤ (t+ γ − 1)v + ϕ2△
(t+ γ)2

≤ v

t+ γ + 1
· (t+ γ − 1)v + ϕ2△

v(t+ γ)2

≤ v

t+ γ + 1

(24)

Besides, if ϕ = 2
µ , γ = max(8L

µ , E), we have:

v ≤ max(
ϕ2△

ϕµ− 1
, γ · ∥w0 − w∗∥22)

≤ ϕ2△
ϕµ− 1

+ γ · ∥w0 − w∗∥22

≤ 4△
µ2

+ γ · ∥w0 − w∗∥22

(25)

By the L-smooth assumption, we further have:

E(F (wt)− F ∗) ≤ L

2

v

γ + t

≤ L

2µ(γ + t)
(4△+ γ · µ2∥w0 − w∗∥22)

(26)

, where△ = 6LΓ+8E2G2+ 1
K

∑K−1
k=0 σ2

k+
4P

(P−2B)2 ·E
2G2+

K−P
K−1 ·

4
P · E

2G2 and Γ = F ∗ − 1
K

∑K−1
k=0 F ∗

k . ■

Theorem 1 illustrates the convergence behavior of Fed-MS.
Specifically, ∥w0−w∗∥22 represents the gap between the global
model at the initial time step and the optimal global model,
and △ represents the error of the algorithm from five aspects.
The first term reflects the gap between the global optimal
solution and the average local optimal solution, and reflects
the non-iid degree of the data to a certain extent. The second
and third terms respectively reflect the global gradient bound
and the variance of the global model parameters. The fourth
term comes from the Byzantine PS, which leads to errors in
the estimation of the global model for each client by using
trimmed mean. The fifth term comes from the error caused by
partial participation, that is, since each parameter server only
gets a partial aggregation result, which is different from the
global result full clients participation FL. Simultaneously, we
can observe that Fed-MS converges at a rate of O(1/T ) in
expectation, where T is the number of training rounds.

VI. SIMULATION

In this section, we simulate a FEEL framework with mul-
tiple PSs on the edge side and a group of clients on the end
side. On each of the client, a visual image classification model
is trained. Four Byzantine behaviors are deployed on edge-
based PSs, including Noise, Random, Safeguard and Backward
attacks [21]. The numerical results reported in this simulation
show that our Fed-MS can effectively resist these edge-side
Byzantine attacks. At the same time, the impact of the number
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(a) Noise attack

0 10 20 30 40 50 60
Epochs

0

10

20

30

40

50

60

70

A
cc

ur
ac

y 
(%

)

Vanilla FL
Fed-MS
Fed-MS¯

(b) Random attack
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(c) Safeguard attack
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(d) Backward attack

Fig. 2: Test accuracy versus training epochs under various attack methods
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(a) ϵ = 0%
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(b) ϵ = 10%
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(c) ϵ = 20%
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(d) ϵ = 30%

Fig. 3: Test accuracy versus training epochs when the proportion of Byzantine PSs varies
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(a) Dα = 1
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(b) Dα = 5
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(c) Dα = 10
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(d) Dα = 1000

Fig. 4: Data distribution of first 10 clients with various Dα
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(b) Dα = 5
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(c) Dα = 10
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(d) Dα = 1000

Fig. 5: Test accuracy versus training epochs with various Dα

of Byzantine parameter servers and data distribution on the
model accuracy are explored.

A. Simulation Settings.

In the experiment, we select a widely used image classifi-
cation dataset CIFAR-10 [36] and adopt MobileNet V2 model
[20], a lightweight model focused on mobile and embedded
devices, as the training model. All experiments are conducted
on a Linux machine equipped with three NVIDIA GeForce
RTX 4090s and 192 GB of main memory.

Byzantine Attacks Settings. We implement four common
Byzantine attack methods on the server side in our simula-
tion, namely Noise, Random, Safeguard, and Backward [37].
Specifically, the Noise attack introduces a Gaussian noise to
the true aggregation result, causing perturbation. The Random
attack replaces the genuine aggregation result with a random
variable randomly sampled from the interval [−10, 10]. The

Safeguard attack is an attack method based on reverse gradi-
ents, for a Byzantine client i, ãit+1 = ait+1 − γgit+1, where
git+1 = ait+1 − ait is a pseudo global gradient and the scaling
factor γ is set to 0.6. The Backward attack, characterized
as a lagging attack, modifies the real aggregation result to
that obtained T rounds ago for a Byzantine client i. In
mathematical terms, ãit+1 = ait+1−T . In our simulation, T
is set to be 2.

Dataset CIFAR-10
Model MobileNet V2
Attack Methods Noise, Random, Safeguard, Backward

FL Settings K = 50, B = 10, E = 3
Dα = 1, 5, 10, 1000, ϵ = 0%, 10%, 20%, 30%

TABLE II: A summary of important settings in simulations.

Federated Learning Settings. We consider 50 end clients
and 10 edge servers for aggregation. Each end client employs
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the Dirichlet function with parameter Dα ∈ {1, 5, 10, 1000}
to obtain distinctive subset of CIFAR-10 as its local training
dataset, where parameter Dα reflects the heterogeneity of
data distribution among clients [38]. A smaller value of Dα

implies a greater degree of non-iid data among clients. We also
explore different proportions of Byzantine PSs, denoted as ϵ,
ranging from 0% to 30%. During the training process, each
edge client performs 3 local iterations and 20 global training
simultaneously. We record the average test accuracy of the
50 local models on the CIFAR-10 test dataset across varying
training epochs. This comprehensive simulation design enables
a thorough examination of the impact of Byzantine parameter
server proportions and data heterogeneity on the performance
of our proposed Fed-MS algorithm.

Some of the important settings mentioned above are sum-
marized in Table II.
B. Numerical results of Fed-MS

In this part, we present a comprehensive numerical result of
our Fed-MS. Specifically, we set the proportion of Byzantine
PSs ϵ = 20% and deploy four distinct attack methods,
Noise, Random, Safeguard and Backward on the correspond-
ing Byzantine PSs. Each client employs the Dirichlet function
with Dα = 10 to obtain a subset of CIFAR-10 for local
training and utilize Fed-MS with a trimmed rate β = 0.2 to de-
fend against adversaries. Additionally, we introduce a variant,
denoted as Fed-MS−, incorporating a trimmed rate β = 0.1 to
further explore the impact of trimmed rate. Additionally, the
Vanilla FL without Byzantine defense [33] is considered as
comparison. The overall performance is graphically depicted
in Fig. 2.

The curves in Fig. 2 reveals that Fed-MS effectively with-
stands these four Byzantine attacks. As the number of training
epoch increases, the average test accuracy of the local model
exhibits a gradual ascent, peaking at 73% ∼ 76% after 60
training epochs. In stark contrast, Fed-MS− and Vanilla FL
can reach only 8% ∼ 20% after same duration in Random
and Safeguard attack. Additionally, as shown in Fig. 2(d), the
staled model parameters produced by the Backward attack sub-
stantially hinder the convergence speed and final accuracy. But
our Fed-MS can effectively remove these outdated parameters,
thereby improving the performance. It is worth mentioning
that Fed-MS− demonstrates improvements in test accuracy
of approximately 10% ∼ 30% under Noise and Backward
attacks compared to Vanilla FL. However, both algorithms
exhibit poor performance under Random and Safeguard at-
tacks, yielding a test accuracy of less than 20%. Interestingly,
under Backward attack, Fed-MS− lags behind Vanilla FL by
approximately 2%. This simulation demonstrates the efficacy
of Fed-MS in resisting Byzantine attacks from the server side
and substantiates the importance of setting the trimmed rate
β higher than the proportion of Byzantine PSs ϵ for optimal
effectiveness.

C. The impact of the proportion of Byzantine PSs
In this part, we explore the impact of varying proportion of

Byzantine PSs, denoted by ϵ ∈ {0%, 10%, 20% and 30%}, on

the model test accuracy. Specifically, we maintain the attack
strategy as Noise, and record the fluctuations in the average
test accuracy of the local model for end client on the CIFAR-
10 test dataset over training epochs. The simulation results are
presented in Fig. 3.

According to the curves in the Fig. 3(a), our Fed-MS
and Vanilla FL both converge as the number of training
epochs increases, eventually reaching a prediction accuracy
of approximately 75%. In other words, in the absence of
Byzantine PSs, our Fed-MS has the similar performance with
that of Vanilla FL. Comparatively, in Fig. 3(b), 3(c) and 3(d),
we observe that, Fed-MS exhibit the identical converge speed
and final test accuracy with the Vanilla FL without Byzantine
PSs. However, the final test accuracy of Vanilla FL decreases
progressively as the proportion of Byzantine PSs increases,
dropping from 48% to 25%, which is 27% and 50% lower
than that in Fed-MS. Those results demonstrates the resilience
of Fed-MS, emphasizing its ability to maintain efficacy even
in the presence of varying Byzantine server proportions.

D. The impact of data heterogeneity
In this part, we explore the impact of diverse data dis-

tributions on Fed-MS, recognizing that data distribution sig-
nificantly influences the federated learning performance. We
maintain proportion of Byzantine PSs ϵ to 20% and employ
Noise for Byzantine attacks, generating varying degrees of
data distribution through distinct Dirichlet parameters Dα ∈
{1, 5, 10, 1000}. Fig. 4 illustrates the data distribution among
the first 10 clients under different Dα. Notably, an increase
in Dα leads to a progressively similar distribution of local
data among clients. Specifically, when Dα = 1000, the data
distribution among all clients becomes nearly identical.

The average test accuracy of local model under different Dα

is depicted in Fig. 5. The results reveal that the convergence
speed and final test accuracy of the local model improve to a
certain extent as Dα increases. For example, when Dα = 1,
the test accuracy after 20 rounds and 60 rounds of training is
about 60% and 70%, which is about 9% and 8% lower than
those when Dα = 1000. These results clearly demonstrate
that a more identical data distribution, reflected in higher
Dα values, contributes to the enhanced performance of Fed-
MS. This rule also applies to Vanilla FL. As Dα increases,
the final performance of Vanilla FL moderately improves by
approximately 10%, but the accuracy still stays below 40%.

E. Summary of the simulation
In simulation, we evaluate the overall performance of Fed-

MS to defend against Byzantine attacks on edge-based PS.
Employing four distinct attack methods, our results demon-
strate that Fed-MS effectively resists these adversarial behav-
iors. Additionally, analyses of the proportion of Byzantine
PSs and data distribution highlight Fed-MS resilience and
effectiveness in diverse scenarios.

VII. CONCLUSION

In this paper, we address the fault-tolerant problem in
federated edge learning with Byzantine parameter servers,
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diverging from the prevalent Byzantine-resilient federated
learning approaches that rely on reliable PSs to counteract
attacks from clients. Our contribution is pioneering as it is
the first to tackle security concerns involving unreliable and
potentially Byzantine PSs. To counter malicious attacks from
Byzantine PSs, we introduce a novel federated edge learning
algorithm, termed Fed-MS, leveraging multi-server technique.
This algorithm, equipped with a specially designed trimmed-
mean-based model filter, enables each client to deduce a
feasible global model for its subsequent round of training,
even when confronted with Byzantine PS attacks. Moreover,
we propose a sparse uploading strategy to enhance the com-
munication efficiency of model aggregation to multiple PSs.
When Byzantine PSs constitute the minority, we prove that our
Fed-MS achieves convergence speed comparable to state-of-
the-art works under non-Byzantine settings. We hope that our
work can shed some light on the security problem of FEEL
on the edge side. Considering the FEEL problem with both
Byzantine PSs and clients will be our work in the future.
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