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Abstract—Federated learning (FL) has emerged as a dis-
tributed machine learning paradigm with applications across
various domains, offering the ability to train a global model
across multiple devices while preserving data privacy. How-
ever, the distributed nature of FL also introduces backdoor
vulnerabilities, where malicious participants can cooperatively
poison the global model by meticulously scaling their shared
models. In this paper, we propose Fed-NAD, a backdoor-resilient
FL framework. Specifically, Fed-NAD leverages neural attention
distillation to enable benign clients to effectively purify the
backdoored global model during local training. Through a two-
stage process, benign clients first train a teacher network locally
on clean datasets to capture benign input features, which is then
used to perform neural attention distillation on the aggregated
backdoored global model. This process ensures that benign
clients can cooperatively obtain clean global models without
backdoors. Extensive experiments conducted on the CIFAR-10
dataset utilizing ResNet-18 architecture showcase the efficacy
and resilience of Fed-NAD, constituting a significant contribution
to the domain of FL security. Numerical results demonstrate a
notable decrease in attack success rates, ranging from 30% to
60%, while incurring no more than a 2% reduction in accuracy
compared to other defense baselines.

Index Terms—Federated Learning, Backdoor Attack, Neural
Attention Distillation

I. INTRODUCTION

Federated learning (FL), as a promising distributed machine
learning paradigm, makes a global model be trained across
multiple devices or servers while keeping the data localized
and has yielded many practical application results in medical
[1], financial [2], transportation [3] and other fields. Specifi-
cally, in FL, only local model/gradient updates are shared and
aggregated, thus significantly reducing the risk of sensitive
information being exposed during transmission.
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Despite the various advantages offered by FL, the openness
of the distributed system also makes it difficult to supervise
and constrain the behavior of each participant, raising a lot of
attention on FL security. Among them, Bagdasaryan et al. [4]
proposed that an adversary can replace the global model in FL
with a backdoored model by appropriately scaling the local
model parameters, which first pointed out the vulnerability
of FL to backdoor attacks. Subsequently, a large amount of
research designed more effective backdoor attack methods [5]—
[7], posing a greater challenge to the security of FL. Generally,
a backdoored model will produce normal results when facing
inputs without a trigger while producing results desired by
the attacker when facing inputs with a specific trigger [8]. In
Fig. 1, a backdoor attack on image classification task in FL is
shown, with a hat as the trigger.

Considering the harmfulness of backdoored models, many
defense mechanisms have been proposed to against backdoor
attacks in FL [9]-[14]. Considering that backdoored models
often differ greatly from benign models, Krum [9], AFA [10]
and Auror [11] etc. use indicators such as Euclidean distance
and Manhattan distance to measure the similarity between
models, thereby removing possible backdoored model before
aggregation process. In addition, some work introduces a ro-
bust model aggregation mechanisms such as median, trimmed
mean [12] and robust learning rate [13] to estimate a secure
global model. After model aggregation, in order to purify the
backdoored global model, using a clean dataset to fine-tune
the global model to achieve catastrophic forgetting of poisoned
samples is also a common method to defend backdoor attacks
[14], [15]. However, the above defense methods all have cor-
responding shortcomings. Pre-aggregation defense often rely
on homogeneous data distribution, resulting in poor defense
performance under heterogeneous data distribution [16]. The
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Fig. 1: A diagram of the backdoor attack under federated learning.

global model estimated by the in-aggregation defense will
always has a large variance under high-dimensional model
parameters, degrading the model usefulness [17]. For post-
aggregation methods, Li et al. [18] have pointed out that
the effect of fine-tuning on clean datasets is rather limited,
and proposed a method based on neural attention distillation
(NAD) to better purify the backdoored model. Although NAD
is useful on a single machine, its effect in backdoor resilient
FL has not been fully explored.

Therefore, in this paper we propose a backdoor resilient
federated learning framework based on neural attention
distillation (Fed-NAD for short). Specifically, we consider a
decentralized FL scenario that includes some benign clients
with clean datasets and some malicious clients with poisoned
datasets. Our objective is to ensure that the benign clients can
cooperatively train clean models without backdoor. In order
to help benign clients effectively purify the backdoored model
during the local training process, our Fed-NAD proposes a
two-stage training process. First, the benign client trains a
teacher network without backdoor on its clean dataset, which
is responsible for learning benign input features of clean
samples. Secondly, this teacher network is used to perform
neural attention distillation on the aggregated global model.
Since the teacher network can infer benign neural attention,
aligning the student network with this knowledge can quickly
purify the global model. During the FL training process,
the teacher network is only trained locally and will not be
shared, while the purified global model will be shared and
aggregated. Besides, detailed experiments are conducted to
evaluate the efficiency and backdoor-resilience of our Fed-
NAD. In summary, our contributions are as follows:

o We consider the design of backdoor defense in FL, which
is a very critical topic for model and data security in
FL. To our best of knowledge, we are one of the first to
introduce neural attention distillation into FL to defend
against backdoor attack.

o A backdoor resilient federated learning framework based
on neural attention distillation (Fed-NAD) approach is
proposed to effectively help benign clients to purify the
backdoored global model during local training. Specifi-
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cally, we propose a two-stage local update strategy that
first trains a benign teacher network through a clean
dataset and then uses NAD to align the aggregated global
model. The teacher network is responsible for capturing
benign input features, and the global model learns benign
features through NAD to achieve rapid purification.

o Extensive experiments are conducted on the CIFAR-
10 dataset utilizing the ResNet-18 architecture proposed
in [19]. Two representative data distribution scenarios,
namely IID and Non-IID, are considered. We also con-
sider two typical backdoor attack method, namely data
poisoning and model poisoning. The numerical results
demonstrate that our Fed-NAD can reduce attack success
rates, ranging from 30% to 60%, while sacrificing no
more than 2% accuracy compared to other baselines.

II. RELATED WORK
A. Backdoor Attack and Defense in Federated Learning

Since the first backdoor attack on FL was proposed by Bag-
dasaryan [4] et al., the past decade has witnessed a series of
backdoor attacks in federated learning, which can be classified
into two main branches based on their attack methods. Data
poisoning involves attackers inserting specific triggers into the
training data and modifying true labels to stealthily introduce
backdoors into the model [20]-[22]. Generally, trigger in
the broad sense may be of various types, including edge
distribution or out-of-distribution samples [23]-[25]. In con-
trast, model poisoning entails attackers clandestinely injecting
backdoors into local or global models during specific steps
of the federated learning process [4], [26]. For example,
scaling the local model during aggregation phases and limiting
excessively large model updates via regularizing loss functions
in local training processes have been proposed as strategies to
replace and evade detection of backdoored models [26].

The above research offers various insights into the back-
door vulnerability of FL, thus facilitating the development
of backdoor resilient FL [8], [9], [12]. These defense strate-
gies can be broadly categorized based on the timing of
their implementation: Pre-Aggregation Defense (Pre-AD), In-
Aggregation Defense (In-AD), and Post-Aggregation Defense
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(Post-AD) [8]. Pre-AD defense mechanisms aim to prevent the
aggregation of backdoored models by filtering out malicious
model parameters. Techniques such as clustering, exempli-
fied by Krum [9], AFA [10], Auror [11], and FoolsGold
[27], leverage measures like Mahalanobis distance or cosine
similarity to identify similar benign model parameters and
exclude those likely to contain backdoor triggers. However,
under non-independent and identically distribution (non-IID)
FL scenario, the models between benign clients also differ
greatly, resulting in a decline in the backdoor resilience of Pre-
AD defense. In contrast, In-AD defense focuses on obtaining a
clean global model during the aggregation process. Strategies
such as median, trimmed mean [12], and robust learning
rate adjustments [13] are employed to ensure robust model
aggregation, effectively neutralizing the influence of malicious
parameters. Unfortunately, the global model estimated by In-
AD often has a larger variance in high-dimensional parameters
space, which is not so friendly for effective local training.
Post-AD defense mechanisms aim to purify backdoored global
models to obtain clean versions, most common method is fine-
tuning global model on a clean dataset [14], [15]. However,
subsequent research has found that the efficiency of fine-tuning
is very limited, and believed that using neutral attention dis-
tillation to purify a backdoored model is more effective [18],
[28]. Although NAD is a promising backdoor defense method,
to the best of our knowledge, no research has considered
introducing NAD into federated learning. Therefore, in this
paper, we propose the Fed-NAD framework, which adopts
NAD to implement backdoor-resistant FL.

B. Knowledge Distillation

Knowledge distillation, first proposed by Hinton et al.
[29], to effectively transfer the knowledge of a large pre-
trained model to another slightly smaller model. In knowledge
distillation, the pre-trained model is regarded as a teacher, used
to output corresponding knowledge, and the smaller model is
regarded as a student, responsible for aligning the knowledge
given by the teacher.

In early research on knowledge distillation, the knowledge
of teacher network generally is usually expressed as its soft
logits, which is the output of the last fully connected layer
[29]-[31]. However, this method often overlooks knowledge
embedded in middle layers of the network, prompting the
development of feature-based distillation [32]-[34]. Here, fea-
tures extracted from the middle layer of the teacher network
serve as hints for the output of the middle layer of the student
model. For instance, Li et al. [35] employ supervised learning
to extract important features from the teacher network. It
is worth mentioning that in addition to transfer learning,
knowledge distillation has also been widely used in backdoor
defense research [18], [28], [36], [37].

III. MODEL AND PROBLEM DEFINITION

A. Federated Learning Model

In this paper, we follow the classic scenario modeling of
FL. Specifically, we consider a decentralized FL with N
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clients, denoted by the set V. Different from centralized
FL, decentralized FL paradigm without a parameter server
introduces heightened challenges for backdoor defense [38].
Each client k possesses a local dataset Dy, local model 6y
and exchanges model parameters over the network. All clients
achieves the following goal by training their own models
locally and sharing the updates with others literally.

Y | Dy

71 (0k; Di). ey

In the above equation, fj, represents the local loss function
of each client k based on its local dataset Dy, typically cross
entropy loss in classification task or mean square error loss in
regression task. The overall dataset is denoted as D = {D; U
DyU...UDy} and 6y, represents a d-dimensional local model
of client k.

Fed-Avg is a promising method to optimize the objective
in (1) through the multiple synchronized training rounds [39].
Specifically, in the beginning, each client is assigned with a
same initial local model 92’0. In each global round ¢t = 1,2, ...,
the client k£ first trains the local model on its local dataset,
then shares latest local model to other clients. Finally, client &
updates its local model by angering the received models. The
three main stages in Fed-Avg can be expressed as follows:

o Local Update: Each client % trains its own local model
0," to optimize the local loss fy(6; D) on its dataset
Dy, for E epochs, i.e. 0 = 0" —nh'V f,.(6}"; Dy) for
1=0,1,2,...., E—1. 9,27 denotes the i-th local models of
client k£ in global round ¢. Besides, 77,21 is the correspond-
ing learning rate in each iteration and V fi(6}"; Dy) is
the corresponding gradient of fk(GZ’i; Dy,).

e Model Sharing: Each client k£ shares its latest local
model QZ’E to all the other clients u € V' \ {k}.

o Model Aggregation: Each client k& aggregates the re-
ceived model by weighted averaging and updates its local
model, which will be used in the next round local training.
Formally, 6,70 = Yiev |%|| N
By repeating the above three stages for sufficient rounds, all

clients will obtain a high-accuracy model on its own dataset.

B. Backdoor Threat Model

In backdoor-resilient FL, all clients V' can be divided into
two categories: the set of malicious nodes .S, and the set of
benign clients S,. The malicious client u obtains a backdoored
model 6%F by training it locally on the poisoned dataset
following the local update in Fed-Avg and shares this model
during the model sharing stage to constantly infect the local
models of other benign clients. In general, a backdoored model
will behave normally without triggers but exhibit malicious
behavior when triggers are present. Therefore, let = and
©(z) denote the clean and poisoned data sample, respectively.
Similarly, y and 7(y) represent the corresponding ground true
and the target result that the adversary aims to induce. The
goal of malicious clients is defined as follows:
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The objective of the malicious clients encompasses two
main components. The first loss function encourages the high
accuracy on clean inputs, i.e. a backdoor model should have
the same output with normal model on a clean sample. The
second loss function represents a high attack success rate when
facing inputs with triggers. Two constraints in (2) reflect the
local update and model aggregation of begin clients.

C. Problem Definition

In contrast to backdoor attackers, benign clients need to
predict accurately on clean inputs, but should not be misled
by inputs with triggers. Therefore, in order to minimize the
harm of the aggregated model in local training, it is necessary
to design a secure local training mechanism Local() to purify
the backdoor model. Consequently, the goal of backdoor
resilient FL can be formulated as the following multi-objective
optimization problem.

min {gl(ek)792(6k)}7Vk‘ € Sp
0 ERY

st. g1 (ek) = _E{z,y}EDk [fk(9k7 {@(m),r(y)})],
92(0k) = Eto yyen,, [fr(Or; {z, y})], 3)
0% = Local(6°),
t+1,0 |D1‘ t,E
eV

The above two objectives reflect the goal of federated learning
and the goal of defending backdoor attacks, respectively.
Besides, in order to understand this paper more conveniently,
all important symbols used in the paper are summarized in
Table I.

IV. METHODOLOGY

A. Neural Attention Distillation

Different from other knowledge distillation methods, NAD
uses the intermediate layer attention knowledge output by the
teacher network to guide the student network. In this paper,
we follow the design of NAD in [18]. Specifically, for a multi-
layer deep neural network model , the activation output result
of the I-th layer is defined as ¢! € R*H*W  where C, H,
and W respectively represent the number of channels, the
height and width of the activation output result. Attention is
defined as a projection of ngl in RT*W that is, the result of
mapping a 3-dimensional tensor to 2 dimensions. According
to the thoughts in [40], the common mapping function A can
be formulated in (4).
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Parameter Definition

N Number of clients

14 Set of clients

Dy, Dataset of client k&

92 Model parameters of client &

éz Teacher model parameters of client k
fE Local loss function of client k

Nk Learning rate of client k

S Set of benign clients

Sm Set of malicious clients

E Epoch number

B A randomly sampled mini-batch

d Dimensions of model parameters

o Activation output result of the [-th layer
B Coefficient of knowledge distillation loss

Parameter of Dirichlet function
Clean and poisoned sample

Size of channel, width and height
Gradient of function f(-)

Lo norm

TABLE I: Important Symbols

D

{z, v}, {e(2), 7(y)}
C, W, H

V()

- 1I2

C
Aum(0) =D |o4];
=1

C
Abm(@') =D lesl"; “
i=1

C
1
Agean(qﬁl) = 6 E |¢i‘p
=1

In the above equation, gbé is the activation result of i-th
channel of ¢!, | - | is the absolute value function and p > 1.
Therefore, for a student network 6 and a teacher network é,
we define the i—th NAD loss £}, ,, as:

A
A

The equation (5) reflects the similarity of the output results
of the student network and the teacher network at a specific
immediate layer. NAD uses this goal to optimize the param-
eters of the student network to align the attention knowledge
of teacher network.

j A(g")
c 0,0) = -

2

B. Two-stage local update

Due to the existence of malicious clients, the aggregated
global model will inevitably contain backdoor. It is necessary
to propose an effective local training strategy to transfer local
knowledge to the global model and purify backdoor. A natural
idea is to use NAD to perform knowledge distillation on the
global model. However, this raises a key question, that is,
how to find a good teacher network for the global model?
Intuitively, this teacher network should have no backdoors
and should have a good grasp of local benign knowledge.
Therefore, we propose a two-stage local update strategy to
train a benign teacher network for the global model. For
each benign client k, it first trains the teacher network using
the local dataset Dj. Obviously, through local training, this
teacher network will continuously learn the knowledge of local
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Fig. 2: A diagram of Fed-NAD.

clean data, thereby generating benign attention knowledge.
Then, the teacher network is used to perform NAD on the
global model to mitigate its backdoor toxicity. Formally, for
a global model 92’0 in round ¢, the local optimization goal of
client k is:

minFy (05, Ok; B) = fu(04; B) + 8- Lnap (04, 05; B)

s.t. f(61; B) = |—;‘ Z Lop(0k(2),y),

BED,

(6)

Lnap (0, 0%; B) = Z Ly ap (0%, 0k; B).
lesc
In the above equation, B is a mini-batch randomly sampled
from the local dataset Dy, Lo g is the cross-entropy loss func-
tion, xx is the teacher model obtained in the ¢-th round, SL is
the set of selected layers by NAD and [ is a hyper-parameter
responsible for balancing NAD and local classification loss.
At this point, we have fully introduced our Fed-NAD
approach. The diagram of Fed-NAD and the corresponding
pseudocode are shown in Fig. 2 and Algorithm 1.

V. EXPERIMENTS

In this section, we present the numerical results of our Fed-
NAD approach. We conduct a comprehensive evaluation on the
performance of Fed-NAD different types of backdoor attack
methods and visualize crucial results.

A. Experiment Settings

Dataset and Model. We utilize the CIFAR-10 dataset [41],
a commonly used benchmark dataset in computer vision.
For image classification training, we employ the ResNet-18
architecture [42], which is a well-known deep residual network
architecture. The ResNet-18 model is instantiated using the
torchvision.models.resnetl8 package.

Attack Baselines. In our evaluation, we consider two
typical attack methods. Firstly, we examine data poisoning
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Algorithm 1: Fed-NAD for benign Client k
Input: Clean dataset Dy; Training round 17
Local epochs E; Learning rate 77,?1;
Initial student model 9%’0;
Initial teacher model ék’o.
Output: A clean global model 8, without backdoor.
1 fort=0,1,2,....,T —1do
// Teacher model training
2 for:=0,1,2,..,. E—1do
for each mini-batch B € D;, do
4 L 0y =00 —n'VLcp(0)'; B)
sl =a

At+1,0 _ HtE.
0, =0,

// NAD for student model

7 for:=0,1,2,....,. E—1do

8 for each mini-batch B € Dy, do

9 0, =05 — 0y 'VF(0), 007 B),
where Fj, is defined in (6);

10 02’”1 = 9?;
// Model sharing
11 Share GZ’E to other clients;
12 | Receive #'” from client i for i € V \ {k};
// Model Aggregation
t+1,0 |Dz‘ t,E
B0 =y 0

ID|™

attacks like BadNet [20]. Secondly, we consider model poison-
ing attacks, particularly Neurotoxin [43], which necessitates
additional information to execute effectively.

In data poisoning method, specific triggers are embedded
into samples from the clean dataset and their corresponding
true labels will be manipulated. The data poisoning rate is
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Dataset Attack Baselines Metrics

Defense Baselines

Fed-Avg TrimmedMean NormCliping Fed-NAD

D ASR(%) | 99.652 99.792 84.866 23.961

Data Poisoning CA(%) 1T 89.271 89.745 83.402 88.006

Non-IID ASR(%) | 98.267 96.477 77.075 73.968

CIFAR-10 CA(%) T 96.747 96.565 95.404 96.561
D ASR(%) |  99.653 99.977 71.765 27.149

Model Poisoning CA(%) T 90.239 87.829 83.752 89.106

) Non-IID ASR(%) | 97917 78.021 75.187 58.237

CA(%) T 96.852 95918 95.435 96.571

TABLE II: A overall performance of different defense baselines.

set to 20%, with labels altered according to the all-to-one
pattern, which modifies the true labels of all poisoned samples
to the same target label. For Neurotoxin, the attacker leverages
models from the previous round, utilizing them to approximate
the benign gradient of the subsequent round. By computing the
top-k% coordinates of the benign gradient, the attacker sets
these as the constraint set. This ensures that only coordinates
not frequently updated by the benign users are modified.

Defense Baselines. We select two methods as our defense
baselines: TrimmedMean [12], which is based on robust ag-
gregation, and NormClipping [44], which employs differential
privacy. These methods have shown defensive efficacy against
various attacks.

FL Settings. Our experimental setup involves 10 clients
organized in a fully connected network. The proportion of
malicious clients, denoted by ¢, is set to 20%. We consider
different dataset distributions, facilitated by the Dirichlet func-
tion. The parameter D, of Dirichlet function reflects the
heterogeneity of the client data distribution. Smaller values
indicating stronger heterogeneity. We employ two scenarios:
Non-IID, utilizing the Dirichlet function with D, = 0.25, and
IID, where the D,, is set to +o0co. All clients undergo 25 rounds
of global training, with each client executing 4 local iterations
and using an initial learning rate of 0.0001. In the Fed-NAD
setting, we utilize the activation outputs from layerl, layer2,
and layer3 of ResNet-18 for attention computation.

Evaluation Metrics. The following two metrics are used to
evaluate the backdoor defense performance [8]:

o« ASR (Attack Successful Rate): ASR quantifies the
percentage of backdoor samples (with triggers) correctly
classified into the target label. A lower ASR indicates a
higher level of backdoor resilience in the model.

e CA (Clean Accuracy): CA evaluates the Top-1 accuracy
of a model when presented with benign data inputs
(without any triggers).

B. Numerical Performance of Fed-NAD

To assess the effectiveness of our proposed Fed-NAD
defense, we evaluate its performance against two distinct
types of backdoor attacks using two metrics: ASR and CA.
Subsequently, we compare the performance of Fed-NAD with
Fed-Avg and two existing defense methods outlined in Table
II.

Our experiments underscore the remarkable efficacy of Fed-
NAD. Though Fed-Avg has good CA performance, it has
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almost 100% ASR, which means it is completely suscep-
tible to attacks. In an IID setting, we achieve a notable
reduction in ASR on CIFAR-10, with 23.961% and 27.149%
for Data Poisoning and Model Poisoning, respectively, while
maintaining a CA comparable to the best-performing method.
Specifically, we achieve a more than 70% ASR reduction
compared with Fed-Avg and TrimmedMean, with CA closely
aligned with them. Additionally, we achieve not only a close
to 50% ASR reduction but also approximately a 5% increase
in CA compared to NormClipping. In a Non-IID setting, our
defense consistently outperforms other baseline methods in
terms of ASR, with negligible CA reduction not exceeding
2%. Notably, while Fed-Avg achieves nearly optimal CA, it
exhibits poor ASR results. In contrast, our defense achieves
a comparatively lower ASR, with reductions of 3.107% and
16.95%, while incurring minimal CA damage. It is worth
noting that TrimmedMean demonstrates a similarly poor per-
formance to Fed-Avg in Data Poisoning.

VI. CONCLUSION

In this paper, we address the security vulnerabilities posed
by backdoor attacks in federated learning (FL) by proposing
Fed-NAD, a novel framework designed to enhance the re-
silience of FL systems against such attacks. Leveraging neural
attention distillation (NAD), Fed-NAD enables benign clients
to purify backdoored global models during local training.
The proposed framework employs a two-stage local update
strategy, where benign clients first train a teacher network
locally on clean datasets to capture benign input features.
Subsequently, the teacher network performs NAD on the
aggregated global model, mitigating its backdoor toxicity. Ex-
perimental evaluation on the CIFAR-10 dataset with ResNet-
18 demonstrates the efficacy and backdoor resilience of Fed-
NAD, showcasing a remarkable reduction in ASR, averaging
from 30% to 60%, while incurring no more than a 2% reduc-
tion in CA compared to other baselines. Overall, our approach
represents a promising solution in safeguarding FL systems
against backdoor attacks, thereby enhancing the integrity and
security of distributed machine learning environments.
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